Associating Peritoneal Metastasis With T2‐Weighted MRI Images in Epithelial Ovarian Cancer Using Deep Learning and Radiomics: A Multicenter Study

麦克内马尔试验 医学 接收机工作特性 无线电技术 卵巢癌 放射科 人工智能 试验装置 癌症 内科学 计算机科学 数学 统计
作者
Mingxiang Wei,Yu Zhang,Cong Ding,Jianye Jia,Haimin Xu,Yao Dai,Guannan Feng,Cai Qin,Genji Bai,Shuangqing Chen,Hong Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (1): 122-131 被引量:19
标识
DOI:10.1002/jmri.28761
摘要

Background The preoperative diagnosis of peritoneal metastasis (PM) in epithelial ovarian cancer (EOC) is challenging and can impact clinical decision‐making. Purpose To investigate the performance of T 2 ‐weighted (T2W) MRI‐based deep learning (DL) and radiomics methods for PM evaluation in EOC patients. Study Type Retrospective. Population Four hundred seventy‐nine patients from five centers, including one training set (N = 297 [mean, 54.87 years]), one internal validation set (N = 75 [mean, 56.67 years]), and two external validation sets (N = 53 [mean, 55.58 years] and N = 54 [mean, 58.22 years]). Field Strength/Sequence 1.5 or 3 T/fat‐suppression T2W fast or turbo spin‐echo sequence. Assessment ResNet‐50 was used as the architecture of DL. The largest orthogonal slices of the tumor area, radiomics features, and clinical characteristics were used to construct the DL, radiomics, and clinical models, respectively. The three models were combined using decision‐level fusion to create an ensemble model. Diagnostic performances of radiologists and radiology residents with and without model assistance were evaluated. Statistical Tests Receiver operating characteristic analysis was used to assess the performances of models. The McNemar test was used to compare sensitivity and specificity. A two‐tailed P < 0.05 was considered significant. Results The ensemble model had the best AUCs, outperforming the DL model (0.844 vs. 0.743, internal validation set; 0.859 vs. 0.737, external validation set I) and clinical model (0.872 vs. 0.730, external validation set II). After model assistance, all readers had significantly improved sensitivity, especially for those with less experience (junior radiologist1, from 0.639 to 0.820; junior radiologist2, from 0.689 to 0.803; resident1, from 0.623 to 0.803; resident2, from 0.541 to 0.738). One resident also had significantly improved specificity (from 0.633 to 0.789). Data Conclusions T2W MRI‐based DL and radiomics approaches have the potential to preoperatively predict PM in EOC patients and assist in clinical decision‐making. Evidence Level 4 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘闹闹完成签到 ,获得积分10
刚刚
研友_ngqKg8完成签到,获得积分20
2秒前
dd36完成签到,获得积分10
2秒前
tleeny完成签到,获得积分10
3秒前
Miracle完成签到,获得积分10
4秒前
彤彤发布了新的文献求助10
6秒前
yolo完成签到,获得积分10
6秒前
7秒前
9秒前
研友_VZG7GZ应助舒心百褶裙采纳,获得10
9秒前
我要看文献完成签到 ,获得积分10
12秒前
XU完成签到,获得积分10
12秒前
阿娟发布了新的文献求助10
12秒前
Slemon完成签到,获得积分10
13秒前
杨家辉完成签到,获得积分10
14秒前
清风完成签到 ,获得积分10
14秒前
英俊的铭应助鑫炜赵采纳,获得10
14秒前
yznfly应助行云流水采纳,获得20
15秒前
lzqlzqlzqlzqlzq完成签到,获得积分10
15秒前
你嵙这个期刊没买应助meo采纳,获得10
15秒前
Loong完成签到,获得积分10
15秒前
打打应助初次见面采纳,获得10
16秒前
嘟嘟图图发布了新的文献求助10
16秒前
叶问完成签到,获得积分10
16秒前
YHDing完成签到,获得积分10
16秒前
Lucas应助净净子采纳,获得10
17秒前
沙克几十块完成签到,获得积分0
17秒前
封似狮完成签到,获得积分10
17秒前
18秒前
Orange应助经冰夏采纳,获得10
18秒前
19秒前
三层楼高完成签到,获得积分10
21秒前
麦乐迪应助科研通管家采纳,获得10
21秒前
烟花应助科研通管家采纳,获得10
21秒前
wwz应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304885
求助须知:如何正确求助?哪些是违规求助? 4451091
关于积分的说明 13850915
捐赠科研通 4338444
什么是DOI,文献DOI怎么找? 2381863
邀请新用户注册赠送积分活动 1376942
关于科研通互助平台的介绍 1344399