离散元法
稳健性(进化)
算法
离散化
计算理论
背景(考古学)
灵活性(工程)
要素(刑法)
计算机科学
数学优化
数学
计算科学
数学分析
机械
生物化学
生物
基因
统计
物理
古生物学
化学
法学
政治学
作者
Tommaso Sorgente,Fabio Vicini,Stefano Berrone,Silvia Biasotti,Gianmarco Manzini,Michela Spagnuolo
出处
期刊:Calcolo
[Springer Science+Business Media]
日期:2023-04-28
卷期号:60 (2)
被引量:1
标识
DOI:10.1007/s10092-023-00517-5
摘要
Abstract We propose a quality-based optimization strategy to reduce the total number of degrees of freedom associated with a discrete problem defined over a polygonal tessellation with the Virtual Element Method. The presented Quality Agglomeration algorithm relies only on the geometrical properties of the problem polygonal mesh, agglomerating groups of neighboring elements. We test this approach in the context of fractured porous media, in which the generation of a global conforming mesh on a Discrete Fracture Network leads to a considerable number of unknowns, due to the presence of highly complex geometries (e.g. thin triangles, large angles, small edges) and the significant size of the computational domains. We show the efficiency and the robustness of our approach, applied independently on each fracture for different network configurations, exploiting the flexibility of the Virtual Element Method in handling general polygonal elements.
科研通智能强力驱动
Strongly Powered by AbleSci AI