Machine Learning in Tissue Engineering

脚手架 组织工程 计算机科学 生物材料 再生医学 人工智能 生化工程 纳米技术 工程类 生物医学工程 材料科学 生物 干细胞 遗传学 数据库
作者
Jason Guo,Michael Januszyk,Michael T. Longaker
出处
期刊:Tissue Engineering Part A [Mary Ann Liebert, Inc.]
卷期号:29 (1-2): 2-19 被引量:8
标识
DOI:10.1089/ten.tea.2022.0128
摘要

Machine learning (ML) and artificial intelligence have accelerated scientific discovery, augmented clinical practice, and deepened fundamental understanding of many biological phenomena. ML technologies have now been applied to diverse areas of tissue engineering research, including biomaterial design, scaffold fabrication, and cell/tissue modeling. Emerging ML-empowered strategies include machine-optimized polymer synthesis, predictive modeling of scaffold fabrication processes, complex analyses of structure–function relationships, and deep learning of spatialized cell phenotypes and tissue composition. The emergence of ML in tissue engineering, while relatively recent, has already enabled increasingly complex and multivariate analyses of the relationships between biological, chemical, and physical factors in driving tissue regenerative outcomes. This review highlights the novel methodologies, emerging strategies, and areas of potential growth within this rapidly evolving area of research. Machine learning (ML) has accelerated scientific discovery and augmented clinical practice across multiple fields. Now, ML has driven exciting new paradigms in tissue engineering research, including machine-optimized biomaterial design, predictive modeling of scaffold fabrication, and spatiotemporal analysis of cell and tissue systems. The emergence of ML in tissue engineering, while relatively recent, has already enabled increasingly complex analyses of the relationships between biological, chemical, and physical factors in driving tissue regenerative outcomes. This review highlights the novel methodologies, emerging strategies, and areas of potential growth within this rapidly evolving area of research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
Jackcaosky发布了新的文献求助10
4秒前
科研通AI5应助菠萝吹雪采纳,获得10
5秒前
7秒前
mjr发布了新的文献求助10
9秒前
在水一方应助纯情的尔槐采纳,获得10
9秒前
volcanor完成签到,获得积分10
9秒前
9秒前
zzz发布了新的文献求助10
12秒前
孙意冉发布了新的文献求助10
12秒前
留胡子的画板完成签到 ,获得积分10
13秒前
13秒前
14秒前
苗苗发布了新的文献求助10
16秒前
潇潇声韵发布了新的文献求助10
16秒前
houhoujiang完成签到,获得积分20
18秒前
科研通AI5应助zzz采纳,获得10
18秒前
sunwen发布了新的文献求助10
19秒前
19秒前
23秒前
飘逸鑫完成签到,获得积分10
23秒前
NexusExplorer应助JJbond采纳,获得10
25秒前
Nacies发布了新的文献求助10
26秒前
26秒前
26秒前
莉莉发布了新的文献求助10
27秒前
潇潇声韵完成签到,获得积分10
27秒前
英俊中心完成签到 ,获得积分10
28秒前
科研通AI5应助cugwzr采纳,获得50
28秒前
29秒前
善学以致用应助Flames采纳,获得10
30秒前
30秒前
吴小白完成签到 ,获得积分10
31秒前
执着的远山完成签到,获得积分10
31秒前
濮阳乐双应助飘逸鑫采纳,获得10
31秒前
33秒前
33秒前
赘婿应助xh采纳,获得10
34秒前
hao123发布了新的文献求助10
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
Effects of Receptive Music Therapy Combined with Virtual Reality on Prevalent Symptoms in Patients with Advanced Cancer 282
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811233
求助须知:如何正确求助?哪些是违规求助? 3355613
关于积分的说明 10376950
捐赠科研通 3072462
什么是DOI,文献DOI怎么找? 1687519
邀请新用户注册赠送积分活动 811671
科研通“疑难数据库(出版商)”最低求助积分说明 766741