Transformer-based deep learning model and video dataset for unsafe action identification in construction projects

变压器 剪辑 计算机科学 深度学习 人工智能 实时计算 机器学习 数据挖掘 工程类 电气工程 电压
作者
Meng Yang,Chengke Wu,Yuanjun Guo,Rui Jiang,Feixiang Zhou,Jianlin Zhang,Zhile Yang
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:146: 104703-104703 被引量:22
标识
DOI:10.1016/j.autcon.2022.104703
摘要

A large proportion of construction accidents are caused by unintentional and unsafe actions and behaviors. It is of significant difficulties and ineffectiveness to monitor unsafe behaviors using conventional manual supervision due to the complex and dynamic working conditions on construction sites. Recently, surveillance videos and computer vision (CV) techniques have been increasingly adopted to automatically identify risky behaviors. However, the challenge remains that spatial and temporal features in video clips cannot be effectively captured and fused by current CV models. To address this challenge, this paper describes a deep learning model named Spatial Temporal Relation Transformer (STR-Transformer), where spatial and temporal features of work behaviors are simultaneously extracted in paralleling video streams and then fused by a specially designed module. To verify the effectiveness of the STR-Transformer, a customized dataset is developed, including seven categories of construction worker behaviors and 1595 video clips. In numerical experiments and case studies, the STR-Transformer achieves an average precision of 88.7%, 4.0% higher than the baseline model. The STR-Transformer enables more accurate and reliable automatic safety surveillance on construction projects, and is expected to reduce accident rates and management costs. Moreover, the performance of STR-Transformer relies on efficient feature integration, which may inspire future studies to identify, extract, and fuse richer features when applying CV-based deep learning models in construction management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mushen发布了新的文献求助10
刚刚
科研小菜狗完成签到,获得积分10
1秒前
学渣小林发布了新的文献求助10
2秒前
挽风完成签到,获得积分10
2秒前
天天快乐应助咕噜咕噜采纳,获得10
2秒前
2秒前
Bin_Liu发布了新的文献求助10
3秒前
6秒前
飞飞飞发布了新的文献求助10
6秒前
10秒前
啤酒人完成签到 ,获得积分10
10秒前
2251877528发布了新的文献求助10
11秒前
11秒前
万能图书馆应助背后瑾瑜采纳,获得10
12秒前
13秒前
Hello应助Simonking采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
cdercder应助科研通管家采纳,获得20
15秒前
zzz发布了新的文献求助10
15秒前
2251877528完成签到,获得积分10
17秒前
林梓发布了新的文献求助10
18秒前
闪闪的妙竹完成签到 ,获得积分10
19秒前
迷路的朋友完成签到,获得积分10
19秒前
崔宁宁完成签到 ,获得积分10
20秒前
烟花应助都是采纳,获得10
20秒前
李白乘完成签到 ,获得积分10
22秒前
科研小菜狗关注了科研通微信公众号
23秒前
情怀应助Simonking采纳,获得10
24秒前
27秒前
钦影发布了新的文献求助10
27秒前
冷艳的竺完成签到,获得积分10
28秒前
29秒前
chen完成签到,获得积分10
30秒前
30秒前
31秒前
小莫发布了新的文献求助10
32秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816942
求助须知:如何正确求助?哪些是违规求助? 3360342
关于积分的说明 10407653
捐赠科研通 3078322
什么是DOI,文献DOI怎么找? 1690694
邀请新用户注册赠送积分活动 814001
科研通“疑难数据库(出版商)”最低求助积分说明 767958