Leveraging Human Mobility Data for Efficient Parameter Estimation in Epidemic Models of COVID-19

计算机科学 估计 传输(电信) 大流行 弹道 2019年冠状病毒病(COVID-19) 流行病模型 人口 力矩(物理) 计量经济学 数据挖掘 电信 数学 工程类 物理 病理 社会学 经典力学 人口学 医学 系统工程 传染病(医学专业) 疾病 天文
作者
Cunqi Shao,Mincheng Wu,Shibo He,Zhiguo Shi,Chao Li,Xinjiang Ye,Jiming Chen
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (1): 763-773 被引量:6
标识
DOI:10.1109/tits.2022.3223229
摘要

Effectively predicting the evolution of COVID-19 is of great significance to contain the pandemic. Extensive previous studies proposed a great number of SIR variants, which are efficient to capture the transmission characteristics of COVID-19. However, the parameter estimation methods in previous studies are based on data from epidemiological investigations, which inevitably have caused a large delay. The popularity of digital trajectory data world-wide makes it possible to understand epidemic spreading from human mobility perspective. The major advantage of digital trajectory data lies in that the co-location level of a population is reflected at every moment, making it possible to forecast the evolution in advance. We showed that the mobility data contributed by mobile phone users could be exploited to estimate the contact probability between individuals, thus revealing the dynamic transmission of COVID-19. Specifically, we developed an estimation method to obtain human co-location levels and quantified the variations of human mobility during the epidemic. Then, we extended the infection rate with a real-time co-location level to further forecast the transmission of an epidemic, predicting the epidemic size much more accurately than conventional methods. Finally, the proposed method was applied to evaluate the quantitative effect of different non-pharmacological interventions by predicting the epidemic situations with various mobility characteristics. The empirical results and simulations corroborated our theoretical analysis, providing effective guidance to contain the pandemic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuan应助缓慢酸奶采纳,获得10
1秒前
Maxwell完成签到,获得积分10
1秒前
尹恩惠完成签到,获得积分10
2秒前
2秒前
dktrrrr完成签到,获得积分10
2秒前
2秒前
orixero应助王旭采纳,获得10
2秒前
3秒前
CCCr完成签到,获得积分10
4秒前
5秒前
科目三应助江辰汐月采纳,获得10
6秒前
6秒前
6秒前
6秒前
SciGPT应助强健的糖豆采纳,获得10
6秒前
ASDS完成签到,获得积分10
8秒前
ffffffflzx666完成签到,获得积分10
8秒前
搜集达人应助研友_8QxN1Z采纳,获得10
9秒前
9秒前
田様应助土拨鼠采纳,获得10
10秒前
彩色曼彤完成签到,获得积分10
10秒前
yeurekar完成签到,获得积分10
10秒前
要减肥元柏完成签到,获得积分10
11秒前
娜娜发布了新的文献求助10
11秒前
ABC的E完成签到 ,获得积分10
11秒前
yang发布了新的文献求助10
11秒前
anyycui发布了新的文献求助10
11秒前
12秒前
时然完成签到 ,获得积分10
12秒前
LX发布了新的文献求助10
13秒前
13秒前
FashionBoy应助laxy采纳,获得30
15秒前
福卡发布了新的文献求助10
15秒前
张wx_100完成签到,获得积分10
15秒前
奋斗蝴蝶发布了新的文献求助10
16秒前
科研通AI5应助www采纳,获得10
18秒前
qq应助jin采纳,获得10
18秒前
时然完成签到 ,获得积分10
19秒前
20秒前
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791521
求助须知:如何正确求助?哪些是违规求助? 3335970
关于积分的说明 10278058
捐赠科研通 3052609
什么是DOI,文献DOI怎么找? 1675169
邀请新用户注册赠送积分活动 803206
科研通“疑难数据库(出版商)”最低求助积分说明 761123