风速
风力发电
计算机科学
高斯分布
概率密度函数
变压器
算法
控制理论(社会学)
人工智能
气象学
数学
统计
工程类
物理
量子力学
电压
电气工程
控制(管理)
作者
Yun Wang,Houhua Xu,Mengmeng Song,Fan Zhang,Yifen Li,Shengchao Zhou,Lingjun Zhang
出处
期刊:Applied Energy
[Elsevier BV]
日期:2023-01-05
卷期号:333: 120601-120601
被引量:62
标识
DOI:10.1016/j.apenergy.2022.120601
摘要
Wind speed forecasting plays an important role in the stable operation of wind energy power systems. However, accurate and reliable wind speed forecasting faces four challenges: how to reduce the data noise; how to find the optimal model inputs; how to describe the complex fluctuations in wind speed; and how to design a suitable loss function to tune the forecasting model. This study proposes a novel forecasting model to address the four challenges mentioned above. First, it uses a wavelet soft threshold denoising method to reduce noise in the original wind speed time series. Second, it uses the maximal information coefficient, which measures the linear and nonlinear relationships between historical wind speed data and forecasted targets, to determine the optimal model inputs. Third, a novel convolutional Transformer-based truncated Gaussian density network is designed to characterize the complex fluctuations in wind speed. The multi-scale information from different convolutional layers is weighted using the self-attention mechanism and then fed into the Transformer network to extract temporal information. The outputs are mapped into the forecasted targets with several fully connected layers. Fourth, considering the non-negativity of wind speed, the truncated Gaussian distribution, which shows a probability of zero when the wind speed is less than zero, is employed to model the uncertainty of wind speed forecasts. This leads to designing a truncated Gaussian distribution-based loss function to train the forecasting model. The forecasting results on three real-world datasets show that the proposed model not only provides accurate deterministic wind speed forecasts but also produces reliable probabilistic wind speed forecasts. The hypothesis testing also illustrates the effectiveness of the proposed model for deterministic and probabilistic wind speed forecasting.
科研通智能强力驱动
Strongly Powered by AbleSci AI