计算机科学
散列函数
人工智能
图像检索
自编码
模式识别(心理学)
水准点(测量)
图像(数学)
汉明距离
构造(python库)
深度学习
计算机安全
地理
大地测量学
算法
程序设计语言
作者
Yuxi Sun,Yunming Ye,Jian Kang,Rubén Fernández-Beltran,Yifang Ban,Xutao Li,Bowen Zhang,Antonio Plaza
标识
DOI:10.1109/tgrs.2022.3231215
摘要
Unsupervised hashing for remote sensing (RS) image retrieval first extracts image features and then use these features to construct supervised information (e.g., pseudo-labels) to train hashing networks. Existing methods usually regard RS images as natural images to extract unisource features. However, these features only contain partial information about ground objects and cannot produce reliable pseudo-labels. In addition, existing methods only generate a pseudo single-label to annotate each RS image, which cannot accurately represent multiple scenes in a RS image. To address these drawbacks, this paper proposes a new Multisource data reconstruction-based deep unsupervised Hashing method, called MrHash, which explores the characteristics of RS images to construct reliable pseudo-labels. In particular, we first use geographic coordinates to obtain different satellite images and develop a novel autoencoder network to extract multisource features from these images. Then pseudo multi-labels are designed to deal with the coexistence of multiple scenes in a single image. These labels are generated by a custom probability function with extracted multisource features. Finally, we propose a novel multi-semantic hash loss by using the Kull-back–Leibler (KL) divergence to preserve the semantic similarity of these pseudo multi-labels in Hamming space. Our newly developed MrHash only uses multisource images to construct supervised information, and hash code generation still relies on a unisource input image. Experiments on benchmark datasets clearly show the superiority of the proposed method over state-of-the-art baselines. https://github.com/sunyuxi/MrHash.
科研通智能强力驱动
Strongly Powered by AbleSci AI