核糖核酸酶P
引导RNA
体内
核糖核酸
化学
信使核糖核酸
α病毒
计算生物学
病毒学
生物
病毒
生物化学
基因组
遗传学
基因
Cas9
作者
Byungji Kim,Ryan R. Hosn,Tanaka Remba,Dong Soo Yun,Na Li,Wuhbet Abraham,Mariane B. Melo,Manuel Cortés,Bridget Li,Yuebao Zhang,Yizhou Dong,Darrell J. Irvine
标识
DOI:10.1016/j.jconrel.2022.11.022
摘要
The recent clinical success of multiple mRNA-based SARS-CoV-2 vaccines has proven the potential of RNA formulated in lipid nanoparticles (LNPs) in humans, and products based on base-modified RNA, sequence-optimized RNA, and self-replicating RNAs formulated in LNPs are all in various stages of clinical development. However, much remains to be learned about critical parameters governing the manufacturing and use of LNP-RNA formulations. One important issue that has received limited attention in the literature to date is the identification of optimal storage conditions for LNP-RNA that preserve long-term activity of the formulations. Here, we analyzed the physical structure, in vivo expression characteristics, and functional activity of alphavirus-derived self-replicating RNA (repRNA)-loaded LNPs encoding HIV vaccine antigens following storage in varying temperatures, buffers, and in the presence or absence of cryoprotectants. We found that for lipid nanoparticles with compositions similar to clinically-used LNPs, storage in RNAse-free PBS containing 10% (w/v) sucrose at −20 °C was able to maintain vaccine stability and in vivo potency at a level equivalent to freshly prepared vaccines following 30 days of storage. LNPs loaded with repRNA could also be lyophilized with retention of bioactivity.
科研通智能强力驱动
Strongly Powered by AbleSci AI