清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Urban resilience and livability performance of European smart cities: A novel machine learning approach

弹性(材料科学) 支持向量机 随机森林 机器学习 人工智能 智慧城市 公制(单位) 朴素贝叶斯分类器 聚类分析 计算机科学 工程类 物联网 计算机安全 物理 热力学 运营管理
作者
Adeeb A. Kutty,Tadesse G. Wakjira,Murat Küçükvar,Galal M. Abdella,Nuri C. Onat
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:378: 134203-134203 被引量:86
标识
DOI:10.1016/j.jclepro.2022.134203
摘要

Smart cities are centres of economic opulence and hope for standardized living. Understanding the shades of urban resilience and livability in smart city models is of paramount importance. This study presents a novel two-stage data-driven framework combining a multivariate metric-distance analysis with machine learning (ML) techniques for resilience and livability assessment of smart cities. A longitudinal dataset for 35 top-ranked European smart cities from 2015 till 2020 applied as the case study under the proposed framework. Initially, a metric distance-based weighting approach is used to weight the indicators and quantify the scores across each aspect under city resilience and urban livability. The key aspects under city resilience include social, economic, infrastructure and built environment and, institutional resilience, while under urban livability, the aspects include accessibility, community well-being, and economic vibrancy. Fuzzy c-means clustering as an unsupervised machine learning technique is used to sort smart cities based on the degree of performance. In addition, an intelligent approach is presented for the prediction of the degree of livability, resilience, and aggregate performance of smart cities based on various supervised ML techniques. Classification models such as Naïve Bayes, k-nearest neighbors (kNN), support vector machine (SVM), Classification and Regression Tree (CART) and, ensemble models including Random Forest (RF) and Gradient Boosting machine (GBM) were used. Three coefficients (accuracy, Cohen's Kappa (κ) and average area under the precision-recall curve (AUC-PR)) along with confusion matrix were used to appraise the performance of the classifier ML models. The results revealed GBM as the best classification and predictive model for the resilience, livability, and aggregate performance assessment. The study also revealed Copenhagen, Geneva, Stockholm, Munich, Helsinki, Vienna, London, Oslo, Zurich, and Amsterdam as the smart cities that co-create resilience and livability in their development model with superior performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
河豚不擦鞋完成签到 ,获得积分10
刚刚
Shrimp完成签到 ,获得积分10
5秒前
susan完成签到 ,获得积分10
6秒前
糖醋里脊加醋完成签到 ,获得积分10
6秒前
kk2024完成签到,获得积分10
12秒前
空曲完成签到 ,获得积分10
14秒前
16秒前
麦冬粑粑发布了新的文献求助10
19秒前
lilylwy完成签到 ,获得积分0
19秒前
科研狗完成签到 ,获得积分0
28秒前
七仔完成签到 ,获得积分10
41秒前
胡楠完成签到,获得积分10
43秒前
Bennyz完成签到,获得积分10
53秒前
juice完成签到 ,获得积分10
55秒前
落樱等不到日落完成签到,获得积分10
1分钟前
qweas完成签到,获得积分10
1分钟前
Xin完成签到,获得积分10
1分钟前
1分钟前
Xin发布了新的文献求助10
1分钟前
1分钟前
围着那只小兔转完成签到 ,获得积分10
1分钟前
SciGPT应助babulao采纳,获得10
1分钟前
Xu完成签到,获得积分10
1分钟前
1分钟前
mengmenglv完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
babulao发布了新的文献求助10
1分钟前
小李发布了新的文献求助10
1分钟前
Spice完成签到 ,获得积分10
1分钟前
念之完成签到 ,获得积分10
1分钟前
1分钟前
Microgan完成签到,获得积分10
1分钟前
babulao完成签到,获得积分10
1分钟前
嫁个养熊猫的完成签到 ,获得积分10
1分钟前
elisa828完成签到,获得积分10
2分钟前
我和你完成签到 ,获得积分10
2分钟前
xiaoxioayixi完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784835
求助须知:如何正确求助?哪些是违规求助? 3330070
关于积分的说明 10244309
捐赠科研通 3045450
什么是DOI,文献DOI怎么找? 1671691
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759544