Blood transcriptome and machine learning identified the crosstalk between COVID-19 and fibromyalgia: a preliminary study

转录组 小桶 基因 2019年冠状病毒病(COVID-19) 医学 纤维肌痛 计算生物学 大流行 生物信息学 生物 遗传学 基因表达 疾病 内科学 传染病(医学专业)
作者
Zhao Zhang,Zhijie Zhu,Dong Liu,Zhenz Mi,Huiren Tao,Hongbin Fan
出处
期刊:Clinical and Experimental Rheumatology [Springer Vienna]
标识
DOI:10.55563/clinexprheumatol/tz9i6y
摘要

The COVID-19 pandemic caused by SARS-CoV-2 has seriously threatened the human health. Growing evidence shows that COVID-19 patients who recovery will persist with symptoms of fibromyalgia (FM). However, the common molecular mechanism between COVID-19 and FM remains unclear.We obtained blood transcriptome data of COVID-19 (GSE177477) and FM (GSE67311) patients from GEO database, respectively. Subsequently, we applied Limma, GSEA, Wikipathway, KEGG, GO, and machine learning analysis to confirm the common pathogenesis between COVID-19 and FM, and screened key genes for the diagnosis of COVID-19 related FM.A total of 2505 differentially expressed genes (DEGs) were identified in the FM dataset. Functional enrichment analysis revealed that the occurrence of FM was intimately associated with viral infection. Moreover, WGCNA analysis identified 243 genes firmly associated with the pathological process of COVID-19. Subsequently, 50 common genes were screened between COVID-19 and FM, and functional enrichment analysis of these common genes primarily involved in immunerelated pathways. Among these common genes, 3 key genes were recognised by machine learning for the diagnosis of COVID-19 related FM. We also developed a diagnostic nomogram to predict the risk of FM occurrence which showed excellent predictive performance. Finally, we found that these 3 key genes were closely relevant to immune cells and screened potential drugs that interacted with the key genes.Our study revealed the bridge role of immune dysregulation between COVID-19 and fibromyalgia, and screened underlying biomarkers to provide new clues for further clinical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古炮完成签到,获得积分10
2秒前
剑指东方是为谁应助多多采纳,获得10
17秒前
逆流的鱼完成签到 ,获得积分10
27秒前
谨慎秋珊完成签到 ,获得积分10
29秒前
LT完成签到 ,获得积分0
30秒前
桐桐应助科研通管家采纳,获得10
31秒前
大模型应助科研通管家采纳,获得10
31秒前
knight7m完成签到 ,获得积分10
35秒前
嘻嘻哈哈啊完成签到 ,获得积分10
39秒前
任小飞完成签到,获得积分20
49秒前
爆米花应助武雨寒采纳,获得10
1分钟前
丝丢皮的完成签到 ,获得积分10
1分钟前
wenhuanwenxian完成签到 ,获得积分10
1分钟前
叶子完成签到 ,获得积分10
1分钟前
钟声完成签到,获得积分0
1分钟前
刻苦的新烟完成签到 ,获得积分10
1分钟前
威武画板完成签到 ,获得积分10
1分钟前
1分钟前
王一g完成签到 ,获得积分10
1分钟前
武雨寒发布了新的文献求助10
1分钟前
培培完成签到 ,获得积分10
1分钟前
hadfunsix完成签到 ,获得积分10
1分钟前
开心夏旋完成签到 ,获得积分10
1分钟前
鲑鱼完成签到 ,获得积分10
1分钟前
jlwang发布了新的文献求助10
1分钟前
丝丢皮得完成签到 ,获得积分10
1分钟前
hy1234完成签到 ,获得积分10
1分钟前
失眠的香蕉完成签到 ,获得积分10
1分钟前
星辰完成签到 ,获得积分10
1分钟前
sjyu1985完成签到 ,获得积分10
2分钟前
和平完成签到 ,获得积分10
2分钟前
CRANE完成签到 ,获得积分10
2分钟前
玺青一生完成签到 ,获得积分10
2分钟前
chenbin完成签到,获得积分10
2分钟前
千玺的小粉丝儿完成签到,获得积分10
2分钟前
1002SHIB完成签到,获得积分10
2分钟前
nihaolaojiu完成签到,获得积分10
2分钟前
sheetung完成签到,获得积分10
2分钟前
离子电池完成签到,获得积分10
2分钟前
小凡凡完成签到,获得积分10
2分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819982
求助须知:如何正确求助?哪些是违规求助? 3362858
关于积分的说明 10418904
捐赠科研通 3081189
什么是DOI,文献DOI怎么找? 1695017
邀请新用户注册赠送积分活动 814815
科研通“疑难数据库(出版商)”最低求助积分说明 768539