材料科学
磁铁矿
自旋电子学
曲面重建
粒子群优化
曲面(拓扑)
理论(学习稳定性)
空位缺陷
纳米颗粒
粒子(生态学)
纳米技术
化学物理
计算机科学
算法
凝聚态物理
机器学习
物理
铁磁性
冶金
几何学
地质学
海洋学
数学
作者
Huan Liu,Yuanyuan Zhao,Shi Qiu,Jijun Zhao,Junfeng Gao
出处
期刊:Chinese Physics B
[IOP Publishing]
日期:2023-02-08
卷期号:32 (5): 056802-056802
被引量:1
标识
DOI:10.1088/1674-1056/acb9e4
摘要
Magnetite nanoparticles show promising applications in drug delivery, catalysis, and spintronics. The surface of magnetite plays an important role in these applications. Therefore, it is critical to understand the surface structure of Fe 3 O 4 at atomic scale. Here, using a combination of first-principles calculations, particle swarm optimization (PSO) method and machine learning, we investigate the possible reconstruction and stability of Fe 3 O 4 (001) surface. The results show that besides the subsurface cation vacancy (SCV) reconstruction, an A layer with Fe vacancy (A-layer-V Fe ) reconstruction of the (001) surface also shows very low surface energy especially at oxygen poor condition. Molecular dynamics simulation based on the iron–oxygen interaction potential function fitted by machine learning further confirms the thermodynamic stability of the A-layer-V Fe reconstruction. Our results are also instructive for the study of surface reconstruction of other metal oxides.
科研通智能强力驱动
Strongly Powered by AbleSci AI