EEG-based major depressive disorder recognition by selecting discriminative features via stochastic search

重性抑郁障碍 判别式 脑电图 计算机科学 人工智能 模式识别(心理学) 支持向量机 心理学 精神科 认知
作者
Hongli Chang,Yuan Zong,Wei Zheng,Yushun Xiao,Xuenan Wang,Jie Zhu,Mengxin Shi,Cheng Liu,Hao Yang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (2): 026021-026021 被引量:6
标识
DOI:10.1088/1741-2552/acbe20
摘要

Objective. Major depressive disorder (MDD) is a prevalent psychiatric disorder whose diagnosis relies on experienced psychiatrists, resulting in a low diagnosis rate. As a typical physiological signal, electroencephalography (EEG) has indicated a strong association with human beings' mental activities and can be served as an objective biomarker for diagnosing MDD.Approach. The basic idea of the proposed method fully considers all the channel information in EEG-based MDD recognition and designs a stochastic search algorithm to select the best discriminative features for describing the individual channels.Main results. To evaluate the proposed method, we conducted extensive experiments on the MODMA dataset (including dot-probe tasks and resting state), a 128-electrode public EEG-based MDD dataset including 24 patients with depressive disorder and 29 healthy controls. Under the leave-one-subject-out cross-validation protocol, the proposed method achieved an average accuracy of 99.53% in the fear-neutral face pairs cued experiment and 99.32% in the resting state, outperforming state-of-the-art MDD recognition methods. Moreover, our experimental results also indicated that negative emotional stimuli could induce depressive states, and high-frequency EEG features contributed significantly to distinguishing between normal and depressive patients, which can be served as a marker for MDD recognition.Significance. The proposed method provided a possible solution to an intelligent diagnosis of MDD and can be used to develop a computer-aided diagnostic tool to aid clinicians in early diagnosis for clinical purposes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
顾末完成签到,获得积分10
1秒前
冰魂应助菜鸡5号采纳,获得10
2秒前
我要吃挂面完成签到,获得积分10
3秒前
caicainuegou发布了新的文献求助10
3秒前
西瓜完成签到 ,获得积分10
4秒前
小任子发布了新的文献求助10
6秒前
6秒前
6秒前
2113完成签到,获得积分10
7秒前
9秒前
动漫大师发布了新的文献求助10
10秒前
chen应助科研通管家采纳,获得20
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
mao应助科研通管家采纳,获得20
12秒前
Akim应助科研通管家采纳,获得30
12秒前
12秒前
冰魂应助caicainuegou采纳,获得30
13秒前
游手浩闲发布了新的文献求助10
14秒前
15秒前
华仔应助cetomacrogol采纳,获得10
16秒前
香蕉觅云应助小帅采纳,获得10
16秒前
山复尔尔完成签到,获得积分10
18秒前
23秒前
24秒前
26秒前
石头完成签到 ,获得积分10
27秒前
28秒前
科研通AI5应助caicainuegou采纳,获得10
28秒前
百里怀蕊发布了新的文献求助10
28秒前
29秒前
29秒前
31秒前
忐忑的书桃完成签到 ,获得积分10
33秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824409
求助须知:如何正确求助?哪些是违规求助? 3366708
关于积分的说明 10442228
捐赠科研通 3086016
什么是DOI,文献DOI怎么找? 1697672
邀请新用户注册赠送积分活动 816458
科研通“疑难数据库(出版商)”最低求助积分说明 769640