中国
生态系统
恢复生态学
环境科学
地理
环境资源管理
环境保护
生态学
考古
生物
作者
Lei Ma,Manyi Li,Chen Wang,Hongtao Si,Mingze Xu,Dongxue Zhu,Cheng Li,Chao Jiang,Peng Xu,Yongyun Hu
出处
期刊:Land
[Multidisciplinary Digital Publishing Institute]
日期:2025-05-25
卷期号:14 (6): 1149-1149
摘要
Surface mining activities cause severe disruption to ecosystems, resulting in the substantial destruction of surface vegetation, the loss of soil organic carbon stocks, and a decrease in the ecosystem’s ability to sequester carbon. The ecological restoration of mining areas has been found to significantly enhance the carbon storage capacity of ecosystems. This study evaluated ecological restoration strategies in Chongqing’s Tongluo Mountain mining area by integrating GF-6 satellite multispectral data (2 m panchromatic/8 m multispectral resolution) with ground surveys across 45 quadrats to develop a quadratic regression model based on vegetation indices and the field-measured biomass. The methodology quantified carbon storage variations among engineered restoration (ER), natural recovery (NR), and unmanaged sites (CWR) while identifying optimal vegetation configurations for karst ecosystems. The methodology combined the high-spatial-resolution satellite imagery for large-scale vegetation mapping with field-measured biomass calibration to enhance the quantitative accuracy, enabling an efficient carbon storage assessment across heterogeneous landscapes. This hybrid approach overcame the limitations of traditional plot-based methods by providing spatially explicit, cost-effective monitoring solutions for mining ecosystems. The results demonstrate that engineered restoration significantly enhances carbon sequestration, with the aboveground vegetation biomass reaching 5.07 ± 1.05 tC/ha, a value 21% higher than in natural recovery areas (4.18 ± 0.23 tC/ha) and 189% greater than at unmanaged sites (1.75 ± 1.03 tC/ha). In areas subjected to engineered restoration, both the vegetation and soil carbon storage showed an upward trend, with soil carbon sequestration being the primary form, contributing to 81% of the total carbon storage, and with engineered restoration areas exceeding natural recovery and unmanaged zones by 17.6% and 106%, respectively, in terms of their soil carbon density (40.41 ± 9.99 tC/ha). Significant variations in the carbon sequestration capacity were observed across vegetation types. Bamboo forests exhibited the highest carbon density (25.8 tC/ha), followed by tree forests (2.54 ± 0.53 tC/ha), while grasslands showed the lowest values (0.88 ± 0.52 tC/ha). For future restoration initiatives, it is advisable to select suitable vegetation types based on the local dominant species for a comprehensive approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI