Mushroom image classification and recognition based on improved ConvNeXt V2

人工智能 计算机科学 模式识别(心理学) 联营 蘑菇 机器学习 化学 食品科学
作者
Shulong Zhang,Kexin Zhao,Yukang Huo,Mingyuan Yao,Xue Lin,Haihua Wang
出处
期刊:Journal of Food Science [Wiley]
卷期号:90 (3)
标识
DOI:10.1111/1750-3841.70133
摘要

Abstract Using on‐site images to classify and identify wild mushroom species is the most effective way to prevent incidents of harm caused by eating wild mushrooms. However, the complexity of natural scenes and the similarity of mushroom morphology bring challenges for accurate classification and recognition. To this end, this paper proposes an improved ConvNeXt V2 network model for classification and recognition of mushrooms in complex scenes and similar appearances. First, this study applies data enhancement techniques such as image flipping, adding noise and mosaic to solve the problem of dataset equalization, and constructs a mushroom image dataset containing 18 categories and the number of 10,986 images. Second, a cross‐modular approach is used to extract and fuse image features of different dimensions to enhance the feature capture capability of the ConvNeXt V2 model. In addition, the model is optimized by the one‐hot coding and the spatial pyramid pooling techniques. The experimental results show that the improved ConvNeXt V2 model outperforms the comparative models such as ResNet, MobileVit, Swin Transformer, ConvNeXt, and ConvNeXt V2 in terms of accuracy, precision, recall, and F1‐Score, which are 96.7%, 96.84%, 96.83%, and 96.84%. The ablation experiments further verify the effectiveness and superiority of the proposed improvement strategy in enhancing the model performance, which can effectively improve the efficiency and accuracy of mushroom image classification and recognition. Practical Application : The study in this paper can be used for the identification of edible and nonedible mushroom, and it can provide technical support to reduce the incidence of mushroom poisoning and ensure food safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子发布了新的文献求助10
刚刚
刚刚
刚刚
Chenlinhong发布了新的文献求助10
1秒前
1秒前
1秒前
忧郁的鲜花完成签到,获得积分10
1秒前
fan完成签到,获得积分10
1秒前
1秒前
yyyy发布了新的文献求助10
1秒前
1秒前
忧郁静丹发布了新的文献求助10
3秒前
安详尔岚完成签到 ,获得积分10
4秒前
Wff完成签到,获得积分10
4秒前
一北完成签到,获得积分10
4秒前
英俊的铭应助十yu采纳,获得10
4秒前
uniquelin发布了新的文献求助10
5秒前
KAIYANG发布了新的文献求助10
6秒前
LI发布了新的文献求助10
6秒前
琮博发布了新的文献求助10
6秒前
lingmuhuahua发布了新的文献求助10
6秒前
完美世界应助somin采纳,获得10
7秒前
8秒前
9秒前
Delia发布了新的文献求助10
10秒前
10秒前
yangdong完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
酷炫的谷丝完成签到,获得积分10
12秒前
无私砖头发布了新的文献求助10
13秒前
MANA发布了新的文献求助10
13秒前
Orange应助炙热的宛采纳,获得10
13秒前
LI完成签到,获得积分10
13秒前
在水一方应助悦耳伊采纳,获得10
13秒前
wyx发布了新的文献求助10
13秒前
木头人应助clattj采纳,获得20
13秒前
木头人应助clattj采纳,获得20
13秒前
zzh完成签到,获得积分10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786765
求助须知:如何正确求助?哪些是违规求助? 3332391
关于积分的说明 10255589
捐赠科研通 3047754
什么是DOI,文献DOI怎么找? 1672681
邀请新用户注册赠送积分活动 801523
科研通“疑难数据库(出版商)”最低求助积分说明 760240