PCLT-PPI: Predicting Multi-Type Interactions Between Proteins Based on Point Cloud Structure and Local Topology Preservation

拓扑(电路) 计算机科学 云计算 点云 类型(生物学) 点(几何) 人工智能 数学 生物 几何学 生态学 操作系统 组合数学
作者
Minglei Li,Yonghong Hou,Shuqin Wang,Jinmao Wei,Jian Liu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (10): 7753-7762
标识
DOI:10.1109/jbhi.2025.3575429
摘要

Protein-protein interactions (PPIs) play a crucial role in cellular biochemical reactions. Computationally mining PPI can help us better understand cellular regulatory mechanisms. Most existing methods focus on the linear structure of proteins, ignoring the influence of native spatial structure on their properties. Furthermore, when neural networks are used to learn protein embeddings, the nonlinear transformations may change the topological relationships between proteins. To address the above issues, we propose a PPI prediction method based on protein point cloud structure and local topology preservation, naming it PCLT-PPI. It extracts structural features from protein point cloud structures and relational features through graph neural networks. Throughout the process, PCLT-PPI maintains the local topology of proteins in their origin and embedding spaces. Experimental results show that, under three test set partition modes (Random, BFS, DFS) and four evaluation metrics (F1, AUC, AUPR, Hamming Loss), PCLT-PPI performs better than several state-of-the-art PPI prediction methods, especially when predicting protein PPIs that are not visible during training, exhibiting stronger robustness and higher generalization ability. The results also demonstrate that point cloud structure and local topology preservation can improve PPI prediction performance, which may provide a reference for subsequent related research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xxfsx应助小香草采纳,获得20
刚刚
大江发布了新的文献求助10
1秒前
1秒前
lhy12345完成签到 ,获得积分10
1秒前
胥明洋发布了新的文献求助10
1秒前
万能图书馆应助忐忑的邑采纳,获得10
1秒前
1秒前
2秒前
2秒前
华仔应助汤圆有奶瓶采纳,获得10
2秒前
小耿发布了新的文献求助10
2秒前
鲜艳的鸿煊完成签到 ,获得积分10
2秒前
3秒前
田様应助哭泣的香菇采纳,获得10
3秒前
Zfeitong完成签到,获得积分20
3秒前
ankang发布了新的文献求助30
3秒前
4秒前
追梦小帅完成签到,获得积分10
4秒前
Hello应助RR采纳,获得10
4秒前
领导范儿应助wzz采纳,获得10
4秒前
直率的乐萱完成签到 ,获得积分10
5秒前
TTT完成签到,获得积分10
5秒前
蓝色逍遥鱼完成签到,获得积分10
5秒前
0501完成签到,获得积分10
5秒前
6秒前
6秒前
完美世界应助爬不起来采纳,获得10
7秒前
星辰大海应助An采纳,获得10
7秒前
无花果应助YYY采纳,获得10
8秒前
科研通AI6应助小蘑菇采纳,获得10
8秒前
刻苦的如霜完成签到,获得积分10
9秒前
ZJJ静完成签到,获得积分10
9秒前
西理湖屠发布了新的文献求助10
10秒前
快乐若颜发布了新的文献求助10
11秒前
二一完成签到 ,获得积分10
11秒前
猪大胖完成签到 ,获得积分10
11秒前
科目三应助hbWang采纳,获得30
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 560
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5362220
求助须知:如何正确求助?哪些是违规求助? 4492082
关于积分的说明 13985733
捐赠科研通 4395260
什么是DOI,文献DOI怎么找? 2414481
邀请新用户注册赠送积分活动 1407229
关于科研通互助平台的介绍 1381801