SAM-MedUS: a foundational model for universal ultrasound image segmentation

医学 分割 超声波 人工智能 放射科 计算机视觉 医学物理学 计算机科学
作者
Feng Tian,Jintao Zhai,Jinru Gong,Weirui Lei,Shuai Chang,Fengkui Ju,Shengyou Qian,Xiao Zou
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:12 (02)
标识
DOI:10.1117/1.jmi.12.2.027001
摘要

PurposeSegmentation of ultrasound images for medical diagnosis, monitoring, and research is crucial, and although existing methods perform well, they are limited by specific organs, tumors, and image devices. Applications of the Segment Anything Model (SAM), such as SAM-med2d, use a large number of medical datasets that contain only a small fraction of the ultrasound medical images.ApproachIn this work, we proposed a SAM-MedUS model for generic ultrasound image segmentation that utilizes the latest publicly available ultrasound image dataset to create a diverse dataset containing eight site categories for training and testing. We integrated ConvNext V2 and CM blocks in the encoder for better global context extraction. In addition, a boundary loss function is used to improve the segmentation of fuzzy boundaries and low-contrast ultrasound images.ResultsExperimental results show that SAM-MedUS outperforms recent methods on multiple ultrasound datasets. For the more easily datasets such as the adult kidney, it achieves 87.93% IoU and 93.58% dice, whereas for more complex ones such as the infant vein, IoU and dice reach 62.31% and 78.93%, respectively.ConclusionsWe collected and collated an ultrasound dataset of multiple different site types to achieve uniform segmentation of ultrasound images. In addition, the use of additional auxiliary branches ConvNext V2 and CM block enhances the ability of the model to extract global information and the use of boundary loss allows the model to exhibit robust performance and excellent generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
哈哈哈发布了新的文献求助10
1秒前
2秒前
2秒前
Perry应助搞怪的芙采纳,获得10
2秒前
3秒前
ccccc发布了新的文献求助10
3秒前
希望天下0贩的0应助久念采纳,获得10
4秒前
蔚然然发布了新的文献求助10
4秒前
bkagyin应助勤奋的远锋采纳,获得10
4秒前
AIwxq发布了新的文献求助10
5秒前
彭于晏应助Tony12采纳,获得10
5秒前
6秒前
AIA发布了新的文献求助10
6秒前
7秒前
大婷子发布了新的文献求助10
8秒前
8秒前
DDDD发布了新的文献求助10
9秒前
9秒前
Lucas应助沙士还是沙事多采纳,获得10
9秒前
9秒前
9秒前
刻苦成风完成签到,获得积分10
9秒前
酷波er应助香蕉梨愁采纳,获得30
10秒前
登登完成签到,获得积分10
11秒前
11秒前
11秒前
ln1111发布了新的文献求助10
12秒前
Gengar发布了新的文献求助10
12秒前
张佳乐完成签到 ,获得积分10
12秒前
Christina完成签到,获得积分10
13秒前
Spike完成签到,获得积分10
13秒前
墨墨发布了新的文献求助10
13秒前
13秒前
13秒前
蟹黄发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468475
求助须知:如何正确求助?哪些是违规求助? 4571886
关于积分的说明 14332538
捐赠科研通 4498526
什么是DOI,文献DOI怎么找? 2464602
邀请新用户注册赠送积分活动 1453226
关于科研通互助平台的介绍 1427841