Efficient Dual Mechanisms Boost the Efficiency of Ternary Solar Cells with Two Compatible Polymer Donors to Exceed 19%

材料科学 三元运算 对偶(语法数字) 聚合物 化学工程 纳米技术 复合材料 艺术 文学类 计算机科学 工程类 程序设计语言
作者
Shizhao Liu,Junjie Wang,Shuguang Wen,Fuzhen Bi,Qianqian Zhu,Chunpeng Yang,Chunming Yang,Junhao Chu,Xichang Bao
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202312959
摘要

Abstract Ternary strategy, introducing a third component into binary blend, opens a simple and promising avenue to improve the power conversion efficiency (PCE) of organic solar cells (OSCs). It is worth noting that the introduction of wide bandgap polymer donors (PDs) as the third component can not only better utilize sunlight but also has the potential to improve the mechanical and thermal stability of the active layer. However, efficient ternary OSCs (TOSCs) with two PDs are rarely reported due to the inferior compatibility of polymers and shortage of efficient PDs to match with non‐fullerene acceptors. Herein, two PDs with different end‐group elements (PBB‐F and PBB‐Cl) are adopted in the dual‐PDs ternary systems to explore the underlying mechanisms and improve their photovoltaic performance. The findings demonstrate that the third components exhibit excellent miscibility with PM6 and are embedded in the host donor to form alloy‐like phase, which plays a crucial role in optimizing film morphology. A more profound mechanism for enhancing efficiency through dual mechanisms, that are the guest energy transfer to PM6 and charge transport at the donor/acceptor interface, has been proposed. Consequently, the PM6:PBB‐Cl:BTP‐eC9 TOSCs achieve impressive PCE of over 19%. Furthermore, the TOSCs exhibit better thermal stability than that of binary OSCs due to the reduction in spatial site resistance resulting from a more tightly entangled long‐chain structure. This work not only provides an effective approach to fabricate high‐performance TOSCs, but also demonstrates the importance of developing dual compatible PD materials. This article is protected by copyright. All rights reserved
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yangyangyang完成签到,获得积分10
1秒前
1秒前
羊羊羊发布了新的文献求助30
2秒前
斯文败类应助superspace采纳,获得10
3秒前
yangyangyang发布了新的文献求助10
3秒前
秋雪瑶应助胡豆采纳,获得10
4秒前
dqw完成签到,获得积分10
4秒前
5秒前
李健应助benhzh采纳,获得10
5秒前
涟漪完成签到,获得积分10
7秒前
沉静野狼发布了新的文献求助10
7秒前
共享精神应助两仪采纳,获得50
8秒前
8秒前
Irene发布了新的文献求助30
8秒前
8秒前
青绿完成签到,获得积分10
9秒前
快乐小马完成签到,获得积分10
11秒前
小朱完成签到,获得积分20
12秒前
852应助糖果里的L采纳,获得10
13秒前
13秒前
13秒前
dqw发布了新的文献求助10
14秒前
14秒前
Solomon应助科研通管家采纳,获得20
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
研友_nqaogn发布了新的文献求助30
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
Solomon应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得30
15秒前
15秒前
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
15秒前
shinysparrow应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
高分求助中
Un calendrier babylonien des travaux, des signes et des mois: Séries iqqur îpuš 1036
IG Farbenindustrie AG and Imperial Chemical Industries Limited strategies for growth and survival 1925-1953 800
The Found Generation: Chinese Communists in Europe during the Twenties 700
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 600
麦可思2024版就业蓝皮书 500
Prochinois Et Maoïsmes En France (et Dans Les Espaces Francophones) 500
重庆市新能源汽车产业大数据招商指南(两链两图两池两库两平台两清单两报告) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2539074
求助须知:如何正确求助?哪些是违规求助? 2173614
关于积分的说明 5590561
捐赠科研通 1893920
什么是DOI,文献DOI怎么找? 944371
版权声明 565211
科研通“疑难数据库(出版商)”最低求助积分说明 503054