亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A single 3D shape wavelet-based generative model

小波 计算机科学 人工智能 计算机视觉 生成模型 模式识别(心理学) 生成语法
作者
Huang Hao,Shuaihang Yuan,Zheng Peng,Hao Yu,Congcong Wen,Yi Fang
出处
期刊:Computers & Graphics [Elsevier BV]
卷期号:119: 103891-103891
标识
DOI:10.1016/j.cag.2024.103891
摘要

3D shape generation, vital in fields including computer graphics, industrial design, and robotics, has seen a significant growth due to deep learning advancements. Nevertheless, a prevailing challenge in this area lies in its heavy reliance on extensive data for training. Consequently, the ability to generate 3D shapes with a limited quantity of training samples emerges as a desirable objective. The aim of this research is to design deep generative models capable of learning from a single reference 3D shape, thereby eliminating the requirement for sizeable datasets. Drawing inspiration from contemporary Generative Adversarial Networks (GANs) that operate on individual 3D shapes in a coarse-to-fine manner hierarchically, we propose a novel wavelet-based framework for single 3D shape generation, which preserves the global shape structure whilst inducing local variability. Our key observation is that, through wavelet decomposition, the low-frequency components of two inputs, where one input is a corrupted version of the other, are very similar. This similarity enables reconstruction of the uncorrupted input by leveraging the low-frequency components of the corrupted version. This observation motivates us to propose the wavelet decomposition of the 2D tri-plane feature maps of a given 3D shape, followed by the synthesis of new tri-plane feature maps for shape generation. To the best of our knowledge, this work represents the first endeavor to incorporate wavelet analysis into a deep generative model for the purpose of generating novel 3D shapes with a single example. Furthermore, we adapt data augmentation and Coulomb adversarial generative loss to facilitate training and generation procedures. We demonstrate the effectiveness of our approach by generating diverse 3D shapes and conducting quantitative comparisons with established baseline methods. Our implementation is available at https://github.com/hhuang-code/SinWavelet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huba完成签到 ,获得积分20
刚刚
3秒前
32完成签到 ,获得积分10
5秒前
李健的小迷弟应助Dash采纳,获得10
7秒前
fheu完成签到,获得积分20
8秒前
勤劳的冰菱完成签到,获得积分10
14秒前
完美世界应助cindy采纳,获得10
17秒前
24秒前
28秒前
科研通AI5应助cindy采纳,获得10
38秒前
cdercder应助冷静新烟采纳,获得10
38秒前
Swear完成签到 ,获得积分10
39秒前
43秒前
43秒前
科研通AI5应助AAA咸鱼批发采纳,获得10
50秒前
Juan_He发布了新的文献求助30
1分钟前
慕青应助314gjj采纳,获得10
1分钟前
YiWei完成签到 ,获得积分10
1分钟前
赵小红完成签到,获得积分10
1分钟前
1分钟前
1分钟前
cindy发布了新的文献求助10
1分钟前
CodeCraft应助zzy采纳,获得10
1分钟前
材料摆渡人完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
sdniuidifod发布了新的文献求助10
1分钟前
1206425219密完成签到,获得积分10
1分钟前
cindy发布了新的文献求助10
1分钟前
1分钟前
香蕉觅云应助冰冰采纳,获得10
1分钟前
小二郎应助sdniuidifod采纳,获得10
1分钟前
1分钟前
firesquall发布了新的文献求助10
1分钟前
1分钟前
AAA咸鱼批发完成签到 ,获得积分10
1分钟前
1分钟前
冰冰发布了新的文献求助10
1分钟前
丘比特应助绝尘采纳,获得10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346402
关于积分的说明 10329217
捐赠科研通 3062864
什么是DOI,文献DOI怎么找? 1681220
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763702