Development of interpretable machine learning models for prediction of acute kidney injury after noncardiac surgery: a retrospective cohort study

医学 逻辑回归 回顾性队列研究 接收机工作特性 急性肾损伤 梯度升压 队列 随机森林 Boosting(机器学习) 肌酐 外科 机器学习 内科学 计算机科学
作者
Rao Sun,Shiyong Li,Yuna Wei,Hu Liu,Qiaoqiao Xu,Gaofeng Zhan,Yan Xu,Yuqin He,Yao Wang,Xinhua Li,Ailin Luo,Zhiqiang Zhou
出处
期刊:International Journal of Surgery [Elsevier]
被引量:5
标识
DOI:10.1097/js9.0000000000001237
摘要

Background: Early identification of patients at high risk of postoperative acute kidney injury (AKI) can facilitate the development of preventive approaches. This study aimed to develop prediction models for postoperative AKI in noncardiac surgery using machine learning algorithms. We also evaluated the predictive performance of models that included only preoperative variables or only important predictors. Materials and methods: Adult patients undergoing noncardiac surgery were retrospectively included in the study (76,457 patients in the discovery cohort and 11,910 patients in the validation cohort). AKI was determined using the KDIGO criteria. The prediction model was developed using 87 variables (56 preoperative variables and 31 intraoperative variables). A variety of machine learning algorithms were employed to develop the model, including logistic regression, random forest, extreme gradient boosting, and gradient boosting decision trees (GBDT). The performance of different models was compared using the area under the receiver operating characteristic curve (AUROC). Shapley Additive Explanations (SHAP) analysis was employed for model interpretation. Results: The patients in the discovery cohort had a median age of 52 years (IQR: 42-61 y), and 1179 patients (1.5%) developed AKI after surgery. The GBDT algorithm showed the best predictive performance using all available variables, or only preoperative variables. The AUROCs were 0.849 (95% CI, 0.835-0.863) and 0.828 (95% CI, 0.813-0.843), respectively. The SHAP analysis showed that age, surgical duration, preoperative serum creatinine and gamma-glutamyltransferase, as well as American Society of Anesthesiologists physical status III were the most important five features. When gradually reducing the features, the AUROCs decreased from 0.852 (including the top 40 features) to 0.839 (including the top 10 features). In the validation cohort, we observed a similar pattern regarding the models’ predictive performance. Conclusions: The machine learning models we developed had satisfactory predictive performance for identifying high-risk postoperative AKI patients. Further, we found that model performance was only slightly affected when only preoperative variables or only the most important predictive features were included.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助tong采纳,获得10
刚刚
严天飞发布了新的文献求助10
1秒前
杜青发布了新的文献求助10
1秒前
xxx发布了新的文献求助10
2秒前
3秒前
丫丫发布了新的文献求助10
3秒前
山大琦子发布了新的文献求助10
3秒前
慕青应助靓丽安萱采纳,获得10
4秒前
4秒前
滚滚滚发布了新的文献求助30
4秒前
包容笑蓝发布了新的文献求助10
4秒前
浮游应助zyyy采纳,获得10
5秒前
5秒前
爱吃土豆的小浣熊完成签到,获得积分10
6秒前
孙树人完成签到,获得积分10
6秒前
6秒前
研友_pLw3vL完成签到,获得积分10
6秒前
7秒前
8秒前
单纯冰枫发布了新的文献求助30
8秒前
8秒前
9秒前
grace发布了新的文献求助10
9秒前
WZQ发布了新的文献求助10
10秒前
CodeCraft应助青烟采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
不喜发布了新的文献求助10
10秒前
11秒前
丘比特应助山大琦子采纳,获得10
11秒前
琳_发布了新的文献求助10
11秒前
三岁应助小白采纳,获得10
11秒前
11秒前
11秒前
兔兔发布了新的文献求助30
11秒前
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790