An attention-based progressive fusion network for pixelwise pavement crack detection

计算机科学 瓶颈 卷积神经网络 块(置换群论) 特征(语言学) 分割 人工智能 卷积(计算机科学) 模式识别(心理学) 一般化 人工神经网络 特征提取 嵌入式系统 数学 哲学 数学分析 语言学 几何学
作者
Mingyang Ma,Lei Yang,Yanhong Liu,Hongnian Yu
出处
期刊:Measurement [Elsevier BV]
卷期号:226: 114159-114159 被引量:4
标识
DOI:10.1016/j.measurement.2024.114159
摘要

Detecting pavement cracks is a complex task in pavement maintenance. Convolutional neural network (CNN)-based approaches have been increasingly used for this purpose in recent years, but these approaches still have limitations, such as insufficient processing of local features, poor boundary detection ability and information loss issue. In this paper, a novel CNN-based model, named APF-Net, is presented. Specifically, to extract richer and more feature information, proposed model utilizes a progressive fusion module (PF) that enables effective feature enhancement by feature learning from cross-layer features, which operates progressively across adjacent network layers, enabling the crack segmentation model to extract more global and detail features from the crack images. Additionally, a hybrid multiple attention (HMA) module that incorporates both a spatial attention mechanism from two directions and a channel attention mechanism, is proposed, which could effectively capture the long-term dependence of crack features and enhance crack boundary detection. Moreover, proposed model employs a lightweight feature extraction block, named mobile inverted bottleneck convolution (MBC) block, which significantly reduces the model parameters and enables more efficient processing of the crack images. This approach results in a reduction of the computational load and faster detection of pavement cracks. The effectiveness and generalization of the proposed APF-Net have been evaluated through experiments on three publicly available crack datasets. The results demonstrate that the proposed model outperforms other state-of-the-art segmentation models in detecting pavement cracks while with 7.6M parameters and 5.0G FLOPs. Our proposed model can contribute to the development of automatic pavement crack detection systems, which can aid in the maintenance and preservation of roads and highways. The source code for proposed APF-Net is available at https://github.com/MMYZZU/APFNet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助一只西瓜茶采纳,获得10
刚刚
Skuld应助文静灵阳采纳,获得10
刚刚
Unicorn完成签到 ,获得积分10
刚刚
刚刚
1秒前
1秒前
博修发布了新的文献求助10
1秒前
1秒前
兴奋柜子完成签到,获得积分10
2秒前
4秒前
奋斗的绝悟完成签到,获得积分10
4秒前
5秒前
hahahah发布了新的文献求助10
5秒前
顾志成发布了新的文献求助10
5秒前
vadzdsgwe4g发布了新的文献求助20
6秒前
小周发布了新的文献求助10
6秒前
科研通AI2S应助猪猪hero采纳,获得10
7秒前
8秒前
852应助博修采纳,获得10
9秒前
zhanyuji发布了新的文献求助10
9秒前
Shirley Lv发布了新的文献求助10
10秒前
传奇3应助sgfiii采纳,获得30
11秒前
搜集达人应助深藏blue采纳,获得10
11秒前
高小航完成签到,获得积分10
12秒前
Alane发布了新的文献求助10
12秒前
shangx发布了新的文献求助10
12秒前
丑丑虎发布了新的文献求助10
13秒前
13秒前
JamesPei应助研友_LjDyNZ采纳,获得10
13秒前
14秒前
16秒前
小蘑菇应助兴奋的一凤采纳,获得10
17秒前
猪猪hero发布了新的文献求助10
18秒前
19秒前
22秒前
322628完成签到,获得积分10
22秒前
liuliu应助白昼采纳,获得20
22秒前
22秒前
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795197
求助须知:如何正确求助?哪些是违规求助? 3340150
关于积分的说明 10299013
捐赠科研通 3056688
什么是DOI,文献DOI怎么找? 1677141
邀请新用户注册赠送积分活动 805224
科研通“疑难数据库(出版商)”最低求助积分说明 762397