Deep learning modeling of ribosome profiling reveals regulatory underpinnings of translatome and interprets disease variants

平动调节 生物 核糖体分析 计算生物学 生物信息学 翻译(生物学) 五素未翻译区 翻译效率 遗传学 编码区 基因 真核翻译 信使核糖核酸
作者
Jialin He,Lei Xiong,Shaohui Shi,Chengyu Li,Kexuan Chen,Qianchen Fang,Jiuhong Nan,Ke Ding,Jingyun Li,Yuanhui Mao,Carles A. Boix,Xinyang Hu,Manolis Kellis,Xushen Xiong
标识
DOI:10.1101/2024.02.26.582217
摘要

Gene expression involves transcription and translation. Despite large datasets and increasingly powerful methods devoted to calculating genetic variants' effects on transcription, discrepancy between mRNA and protein levels hinders the systematic interpretation of the regulatory effects of disease-associated variants. Accurate models of the sequence determinants of translation are needed to close this gap and to interpret disease-associated variants that act on translation. Here, we present Translatomer, a multimodal transformer framework that predicts cell-type-specific translation from mRNA expression and gene sequence. We train Translatomer on 33 tissues and cell lines, and show that the inclusion of sequence substantially improves the prediction of ribosome profiling signal, indicating that Translatomer captures sequence-dependent translational regulatory information. Translatomer achieves accuracies of 0.72 to 0.80 for de novo prediction of cell-type-specific ribosome profiling. We develop an in silico mutagenesis tool to estimate mutational effects on translation and demonstrate that variants associated with translation regulation are evolutionarily constrained, both within the human population and across species. Notably, we identify cell-type-specific translational regulatory mechanisms independent of eQTLs for 3,041 non-coding and synonymous variants associated with complex diseases, including Alzheimer's disease, schizophrenia, and congenital heart disease. Translatomer accurately models the genetic underpinnings of translation, bridging the gap between mRNA and protein levels, and providing valuable mechanistic insights toward mapping "missing regulation" in disease genetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助hsx采纳,获得10
刚刚
Wwwwww发布了新的文献求助10
刚刚
玖伍发布了新的文献求助10
刚刚
刚刚
苦命的牛马关注了科研通微信公众号
1秒前
1秒前
yeu103325应助有魅力的盼旋采纳,获得30
2秒前
苏源智完成签到,获得积分10
2秒前
烟花应助晴天娃娃采纳,获得10
3秒前
猫猫发布了新的文献求助10
3秒前
思源应助焕颜采纳,获得10
3秒前
3秒前
ATX760发布了新的文献求助10
4秒前
yywww发布了新的文献求助10
4秒前
WangRui完成签到,获得积分10
4秒前
啦啦鱼完成签到 ,获得积分10
4秒前
5秒前
香蕉觅云应助不要加糖采纳,获得10
5秒前
7秒前
Rita应助呆萌的采纳,获得10
7秒前
开心凌柏发布了新的文献求助10
7秒前
8秒前
萧奕尘完成签到 ,获得积分10
8秒前
8秒前
cw发布了新的文献求助10
9秒前
重要的酸奶完成签到,获得积分10
9秒前
玖伍完成签到,获得积分10
10秒前
10秒前
科研通AI2S应助sml采纳,获得10
10秒前
10秒前
11秒前
追寻盈发布了新的文献求助10
12秒前
12秒前
12秒前
思源应助圆圆脸采纳,获得10
13秒前
科研宝发布了新的文献求助10
13秒前
Srishti完成签到,获得积分10
13秒前
小豆泥完成签到,获得积分10
14秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4564080
求助须知:如何正确求助?哪些是违规求助? 3988332
关于积分的说明 12349825
捐赠科研通 3659447
什么是DOI,文献DOI怎么找? 2016625
邀请新用户注册赠送积分活动 1051033
科研通“疑难数据库(出版商)”最低求助积分说明 938872