HpT: Hybrid Acceleration of Spatio-Temporal Attention Model Training on Heterogeneous Manycore Architectures

计算机科学 电阻随机存取存储器 利用 计算机体系结构 变压器 推论 软件 超级计算机 嵌入式系统 人工智能 并行计算 操作系统 电气工程 计算机安全 工程类 电压
作者
Saiman Dahal,Pratyush Dhingra,Krishu Kumar Thapa,Partha Pratim Pande,Ananth Kalyanaraman
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/tpds.2024.3522781
摘要

Transformer models have become widely popular in numerous applications, and especially for building foundation large language models (LLMs). Recently, there has been a surge in the exploration of transformer-based architectures in non-LLM applications. In particular, the self-attention mechanism within the transformer architecture offers a way to exploit any hidden relations within data, making it widely applicable for a variety of spatio-temporal tasks in scientific computing domains (e.g., weather, traffic, agriculture). Most of these efforts have primarily focused on accelerating the inference phase. However, the computational resources required to train these attention-based models for scientific applications remain a significant challenge to address. Emerging non-volatile memory (NVM)-based processing-in-memory (PIM) architectures can achieve higher performance and better energy efficiency than their GPU-based counterparts. However, the frequent weight updates during training would necessitate write operations to NVM cells, posing a significant barrier for considering stand-alone NVM-based PIM architectures. In this paper, we present HpT , a new hybrid approach to accelerate the training of attention-based models for scientific applications. Our approach is hybrid at two different layers: at the software layer, our approach dynamically switches from a full-parameter training mode to a lower-parameter training mode by incorporating intrinsic dimensionality; and at the hardware layer, our approach harnesses the combined power of GPUs, resistive random-access memory (ReRAM)-based PIM devices, and systolic arrays. This software-hardware co-design approach is aimed at adaptively reducing both runtime and energy costs during the training phase, without compromising on quality. Experiments on four concrete real-world scientific applications demonstrate that our hybrid approach is able to significantly reduce training time (up to $11.9\times$ ) and energy consumption (up to $12.05\times$ ), compared to the corresponding full-parameter training executing on only GPUs. Our approach serves as an example for accelerating the training of attention-based models on heterogeneous platforms including ReRAMs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
monster发布了新的文献求助20
刚刚
Mic应助Sunshine采纳,获得30
1秒前
浮游应助一一采纳,获得10
1秒前
2秒前
Yuu完成签到,获得积分10
3秒前
4秒前
小刚炮发布了新的文献求助10
4秒前
景天戏水发布了新的文献求助30
5秒前
佛人世间完成签到,获得积分10
6秒前
6秒前
jl发布了新的文献求助10
7秒前
7秒前
OE完成签到,获得积分10
7秒前
8秒前
10秒前
玉锅巴完成签到,获得积分10
10秒前
11秒前
Dash发布了新的文献求助20
11秒前
lululu发布了新的文献求助10
11秒前
11秒前
kai发布了新的文献求助10
12秒前
12秒前
丘比特应助聪慧的从雪采纳,获得30
13秒前
shhoing应助耍酷的天德采纳,获得10
13秒前
玉锅巴发布了新的文献求助10
14秒前
心太软啊完成签到,获得积分10
16秒前
16秒前
叶子发布了新的文献求助10
16秒前
寒冷语兰发布了新的文献求助10
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
puzhongjiMiQ完成签到,获得积分10
19秒前
虎虎虎完成签到,获得积分10
20秒前
21秒前
22秒前
22秒前
高高孤风发布了新的文献求助10
23秒前
小杨完成签到,获得积分10
24秒前
万能图书馆应助lululu采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5541412
求助须知:如何正确求助?哪些是违规求助? 4627832
关于积分的说明 14605458
捐赠科研通 4568899
什么是DOI,文献DOI怎么找? 2504849
邀请新用户注册赠送积分活动 1482334
关于科研通互助平台的介绍 1453871