Development of a predictive model for gastrointestinal side effects of metformin treatment in Chinese individuals with type 2 diabetes based on four randomised clinical trials

医学 二甲双胍 内科学 2型糖尿病 临床试验 糖尿病 内分泌学 胰岛素
作者
Weihao Wang,Yujia Han,Xun Jiang,Jian Shao,Jia Zhang,Kaixin Zhou,Wenying Yang,Qi Pan,Zedong Nie,Lixin Guo
出处
期刊:Diabetes, Obesity and Metabolism [Wiley]
卷期号:27 (2): 953-964 被引量:2
标识
DOI:10.1111/dom.16095
摘要

Abstract Aims This study aimed to build a model‐based predictive approach to evaluate the gastrointestinal side effects following an initial metformin medication. Materials and Methods The model was developed from data from four randomised clinical cohorts. A prediction model was established using integrated or simplified indicators. Ten machine learning models were used for the construction of predictive models. The Shapley values were used to report the features' contribution. Results Four randomised clinical trial cohorts, including 1736 patients with type 2 diabetes, were first included in the analysis. Seventy percent of participants (1216) were allocated to the training set, 15% (260) were assigned to the internal validation set and 15% (260) were assigned to the test set. The Extra Tree model had the highest area under curve (AUC) (0.87) in the validation and test set. The top five crucial indicators were blood urea nitrogen (BUN), sex, triglyceride (TG), high‐density lipoprotein‐cholesterol (HDL‐C) and total cholesterol (TC), and these five indicators were selected for constructing a simplified predictive model (AUC = 0.76). An online web‐based tool was established based on the predictive model with integrated 17 features and top five indicators. Conclusions To predict gastrointestinal side effects in diabetic patients for initial use of metformin, a few easily obtained features are needed to establish the model. The model can be applied to the Chinese population in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李新霞发布了新的文献求助10
刚刚
Joy完成签到,获得积分10
刚刚
刚刚
Yuan完成签到,获得积分10
1秒前
2秒前
2秒前
澪mio发布了新的文献求助10
2秒前
科研通AI6应助何1采纳,获得10
2秒前
2秒前
2秒前
Zero发布了新的文献求助10
3秒前
3秒前
爬行风完成签到,获得积分10
3秒前
共享精神应助轻松的靖易采纳,获得10
3秒前
鹿子默完成签到,获得积分10
4秒前
4秒前
LLL发布了新的文献求助10
4秒前
4秒前
等风来发布了新的文献求助10
4秒前
4秒前
旋转木mua关注了科研通微信公众号
4秒前
5秒前
5秒前
5秒前
5秒前
万能图书馆应助淡淡从安采纳,获得10
6秒前
charlie完成签到,获得积分10
6秒前
缥缈青文发布了新的文献求助10
7秒前
斯文的茹嫣完成签到,获得积分10
7秒前
东单的单车完成签到,获得积分10
7秒前
8秒前
8秒前
zhuww发布了新的文献求助10
8秒前
lyd发布了新的文献求助10
8秒前
8秒前
xzj7789210发布了新的文献求助10
9秒前
9秒前
文静绮梅发布了新的文献求助10
10秒前
乐观姒发布了新的文献求助10
10秒前
Hello应助Gardenia。采纳,获得30
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5614027
求助须知:如何正确求助?哪些是违规求助? 4699176
关于积分的说明 14901478
捐赠科研通 4738567
什么是DOI,文献DOI怎么找? 2547447
邀请新用户注册赠送积分活动 1511277
关于科研通互助平台的介绍 1473666