Predicting Participation Shift of Users at the Next Stage in Social Networks

计算机科学 概化理论 排名(信息检索) 机器学习 人工智能 级联 图形 信息级联 保险丝(电气) 社交网络(社会语言学) 数据挖掘 理论计算机科学 社会化媒体 数学 万维网 统计 化学 色谱法 电气工程 工程类
作者
Yichao Zhang,Z. G. Wang,Huangxin Zhuang,Lei Song,Guanghui Wen,Jihong Guan,Shuigeng Zhou
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:12 (2): 1066-1079
标识
DOI:10.1109/tnse.2024.3523300
摘要

In online social networks, numerous studies have demonstrated the challenge of predicting who will eventually engage in an information cascade with its initial part. Take a step back. Can we predict who will engage in the cascade at the next stage if the lifetime of cascades is divided into a certain number of stages? Although numerous attempts have been made to solve this problem, how to extract useful information from the historical cascades spreading within a sub-network and the connections among users remains an open question. This paper proposes a simple but efficient unsupervised agent-based model, the triple ranking model, which integrates exposure time ranking, social gravity ranking, and cascade similarity ranking. The rankings, a key component of our model, have been successful in characterizing the social impact of shifted users, temporal information, and sequential cascade information, demonstrating the generalizability of our approach. To test the contributions of the features in supervised frameworks, we fuse them with two graph neural networks, the graph convolutional network (GCN) and graph attention network (GAT). Our experimental results on three Twitter networks unequivocally show that the proposed algorithm outperforms the tested state-of-art algorithms across a series of performance metrics. Notably, its time complexity is also lower than theirs, further underscoring its superiority. The observations demonstrate that the rankings effectively abstract the features hidden in the information cascades and in the topology of social networks, paving the way for further studies on posting engagement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dandna完成签到 ,获得积分10
3秒前
机智的三国菌完成签到,获得积分10
3秒前
科研通AI5应助bzy采纳,获得10
5秒前
xxxxx发布了新的文献求助10
5秒前
香蕉觅云应助静好采纳,获得10
7秒前
上善若水完成签到 ,获得积分10
8秒前
河狸上校完成签到 ,获得积分10
8秒前
秦慧萍完成签到,获得积分10
9秒前
kytwenxian完成签到,获得积分0
11秒前
12秒前
13秒前
mingyahaoa完成签到,获得积分10
14秒前
fly发布了新的文献求助20
14秒前
14秒前
LEO1253285120完成签到,获得积分10
15秒前
烟花应助科研通管家采纳,获得10
16秒前
许甜甜鸭应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
许甜甜鸭应助科研通管家采纳,获得10
17秒前
17秒前
18秒前
zz发布了新的文献求助10
20秒前
投稿即中完成签到,获得积分10
22秒前
海德堡完成签到,获得积分10
24秒前
24秒前
哈哈哈完成签到 ,获得积分20
26秒前
bzy发布了新的文献求助10
26秒前
顶刊收割机完成签到,获得积分10
30秒前
哈哈哈关注了科研通微信公众号
32秒前
白日梦想家完成签到,获得积分10
32秒前
34秒前
36秒前
zho关闭了zho文献求助
38秒前
Eternitymaria发布了新的文献求助10
39秒前
yyyyyyyyyy完成签到,获得积分10
42秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834985
求助须知:如何正确求助?哪些是违规求助? 3377482
关于积分的说明 10498789
捐赠科研通 3096967
什么是DOI,文献DOI怎么找? 1705382
邀请新用户注册赠送积分活动 820539
科研通“疑难数据库(出版商)”最低求助积分说明 772123