Physics informed image restoration under low illumination with simultaneous parameter estimation using 3D integral imaging and Bayesian neural networks

光学 积分成像 贝叶斯概率 人工神经网络 物理 图像复原 图像处理 人工智能 计算机科学 图像(数学)
作者
Gokul Krishnan,Jiheon Lee,Saurabh Goswami,Bahram Javidi
出处
期刊:Optics Express [The Optical Society]
卷期号:33 (3): 6121-6121 被引量:3
标识
DOI:10.1364/oe.546780
摘要

Image restoration aims to recover a clean image given a noisy image. It has long been a topic of interest for researchers in imaging, optical science and computer vision. As the imaging environment becomes more and more deteriorated, the problem becomes more challenging. Several computational approaches, ranging from statistical to deep learning, have been proposed over the years to tackle this problem. The deep learning-based approaches provided promising image restoration results, but it’s purely data driven and the requirement of large datasets (paired or unpaired) for training might demean its utility for certain physical problems. Recently, physics informed image restoration techniques have gained importance due to their ability to enhance performance, infer some sense of the degradation process and its potential to quantify the uncertainty in the prediction results. In this paper, we propose a physics informed deep learning approach with simultaneous parameter estimation using 3D integral imaging and Bayesian neural network (BNN). An image-image mapping architecture is first pretrained to generate a clean image from the degraded image, which is then utilized for simultaneous training with Bayesian neural network for simultaneous parameter estimation. For the network training, simulated data using the physical model has been utilized instead of actual degraded data. The proposed approach has been tested experimentally under degradations such as low illumination and partial occlusion. The recovery results are promising despite training from a simulated dataset. We have tested the performance of the approach under varying levels of illumination condition. Additionally, the proposed approach also has been analyzed against corresponding 2D imaging-based approach. The results suggest significant improvements compared to 2D even training under similar datasets. Also, the parameter estimation results demonstrate the utility of the approach in estimating the degradation parameter in addition to image restoration under the experimental conditions considered.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
2秒前
cc完成签到 ,获得积分10
2秒前
zxc完成签到,获得积分10
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
苏栀发布了新的文献求助10
5秒前
6秒前
冷傲书萱应助乐乐采纳,获得10
7秒前
简简子完成签到 ,获得积分10
7秒前
8秒前
xiaoyu关注了科研通微信公众号
9秒前
9秒前
英姑应助胡舒阳采纳,获得10
10秒前
热情笑旋完成签到 ,获得积分10
14秒前
江台风应助liam采纳,获得30
15秒前
15秒前
19秒前
21秒前
轨迹应助jiujiuji采纳,获得20
21秒前
ludwig发布了新的文献求助10
22秒前
23秒前
慕青应助睿洁洁采纳,获得10
23秒前
量子星尘发布了新的文献求助10
24秒前
萨格发布了新的文献求助10
24秒前
25秒前
Cupid发布了新的文献求助30
26秒前
豆腐完成签到,获得积分10
27秒前
28秒前
28秒前
蓝天发布了新的文献求助10
29秒前
zhang发布了新的文献求助10
29秒前
烟花应助罗伯特骚塞采纳,获得10
30秒前
32秒前
茶柠完成签到 ,获得积分10
32秒前
TaoJ发布了新的文献求助10
32秒前
nais完成签到,获得积分10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761057
求助须知:如何正确求助?哪些是违规求助? 5527282
关于积分的说明 15398807
捐赠科研通 4897632
什么是DOI,文献DOI怎么找? 2634274
邀请新用户注册赠送积分活动 1582397
关于科研通互助平台的介绍 1537744