Fuzzy Weighted Principal Component Analysis for Anomaly Detection

主成分分析 异常检测 模糊逻辑 模式识别(心理学) 数据挖掘 异常(物理) 人工智能 组分(热力学) 计算机科学 数学 物理 凝聚态物理 热力学
作者
Sisi Wang,Feiping Nie,Zheng Wang,Rong Wang,Xuelong Li
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
标识
DOI:10.1145/3715148
摘要

Principal Component Analysis (PCA) is one of the most famous unsupervised dimensionality reduction algorithms and has been widely used in many fields. However, it is very sensitive to outliers, which reduces the robustness of the algorithm.. In recent years, many studies have tried to employ \(\ell_{1}\) -norm to improve the robustness of PCA, but they all lack rotation invariance or the solution is expensive. In this paper, we propose a novel robust principal component analysis, namely, Fuzzy Weighted Principal Component Analysis (FWPCA), which still uses squared \(\ell_{2}\) -norm to minimize reconstruction error and maintains rotation invariance of PCA. The biggest bright spot is that the contribution of data is restricted by fuzzy weights, so that the contribution of normal samples are much greater than noise or abnormal data, and realizes anomaly detection. Besides, a more reasonable data center can be obtained by solving the optimal mean to make projection matrix more accurate. Subsequently, an effective iterative optimization algorithm is developed to solve this problem, and its convergence is strictly proved. Extensive experimental results on face datasets and RGB anomaly detection datasets show the superiority of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七发布了新的文献求助10
刚刚
2秒前
英姑应助Phaiane采纳,获得10
3秒前
Mark完成签到 ,获得积分10
3秒前
鲲鹏戏龙完成签到,获得积分10
5秒前
wanci应助张太岳采纳,获得30
5秒前
6秒前
wss完成签到 ,获得积分10
7秒前
8秒前
9秒前
wss关注了科研通微信公众号
11秒前
小开完成签到,获得积分10
11秒前
12秒前
小二郎应助whm采纳,获得10
13秒前
华仔应助zzzzzzy采纳,获得10
13秒前
木野狐发布了新的文献求助10
13秒前
Hello应助南风采纳,获得30
14秒前
14秒前
niuma发布了新的文献求助10
14秒前
gty发布了新的文献求助10
14秒前
17秒前
我是老大应助XIA采纳,获得10
18秒前
科研通AI5应助youyou1990采纳,获得10
18秒前
ll发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
21秒前
21秒前
22秒前
22秒前
书中月发布了新的文献求助10
23秒前
23秒前
23秒前
烟花应助嘻哈采纳,获得10
24秒前
zuoronghua发布了新的文献求助10
25秒前
26秒前
科研通AI5应助gty采纳,获得10
26秒前
SMY发布了新的文献求助10
26秒前
26秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842887
求助须知:如何正确求助?哪些是违规求助? 3384898
关于积分的说明 10538020
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710326
邀请新用户注册赠送积分活动 823598
科研通“疑难数据库(出版商)”最低求助积分说明 774149