吸引子
伯努利原理
数字信号处理
转化(遗传学)
李雅普诺夫指数
计算机科学
分形
拓扑(电路)
算法
数学
混乱的
物理
数学分析
人工智能
生物化学
化学
组合数学
基因
计算机硬件
热力学
作者
Zeping Zhang,Kehui Sun,Wanting Zhu,Huihai Wang
标识
DOI:10.1088/1402-4896/ad9ef5
摘要
Abstract Based on the mathematical model of the Bernoulli lemniscate, we design a novel hyperchaotic map with a dual-cavity attractor. Through dynamic analyses, results indicate that the proposed map is hyperchaos and has wide parameter range, large Lyapunov Exponents (LEs), and high Permutation Entropy (PE) complexity. In addition, two types of multi-cavity hyperchaotic maps are constructed by employing the fractal transformation and rotation transformation, respectively. The multi-cavity hyperchaotic maps have complex topological structures. The hyperchaotic maps are implemented on the digital signal processor (DSP) platform for practical application.
科研通智能强力驱动
Strongly Powered by AbleSci AI