Advancing UAV swarm autonomy with ARCog-NET for task allocation, path planning, and formation control

任务(项目管理) 路径(计算) 群体行为 运动规划 网(多面体) 控制(管理) 计算机科学 自治 运筹学 分布式计算 人工智能 模拟 工程类 数学 计算机网络 系统工程 政治学 机器人 法学 几何学
作者
Gabryel Silva Ramos,Milena F. Pinto,Diego B. Haddad
出处
期刊:Robotica [Cambridge University Press]
卷期号:: 1-45 被引量:1
标识
DOI:10.1017/s0263574725101914
摘要

Abstract Most research on UAV swarm architectures remains confined to simulation-based studies, with limited real-world implementation and validation. In order to mitigate this issue, this research presents an improved task allocation and formation control system within ARCog-NET (Aerial Robot Cognitive Architecture), aimed at deploying autonomous UAV swarms as a unified and scalable solution. The proposed architecture integrates perception, planning, decision-making, and adaptive learning, enabling UAV swarms to dynamically adjust path planning, task allocation, and formation control in response to evolving mission demands. Inspired by artificial intelligence and cognitive science, ARCog-NET employs an Edge-Fog-Cloud (EFC) computing model, where edge UAVs handle real-time data acquisition and local processing, fog nodes coordinate intermediate control, and cloud servers manage complex computations, storage, and human supervision. This hierarchical structure balances real-time autonomy at the UAV level with high-level optimization and decision-making, creating a collective intelligence system that automatically fine-tunes decision parameters based on configurable triggers. To validate ARCog-NET, a realistic simulation framework was developed using SITL (Software-In-The-Loop) with actual flight controller firmware and ROS-based middleware, enabling high-fidelity emulation. This framework bridges the gap between virtual simulations and real-world deployments, allowing evaluation of performance in environmental monitoring, search and rescue, and emergency communication network deployment. Results demonstrate superior energy efficiency, adaptability, and operational effectiveness compared to conventional robotic swarm methodologies. By dynamically optimizing data processing based on task urgency, resource availability, and network conditions, ARCog-NET bridges the gap between theoretical swarm intelligence models and real-world UAV applications, paving the way for future large-scale deployments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
up完成签到,获得积分10
1秒前
淡淡的酸奶完成签到,获得积分10
1秒前
wanci应助yunsww采纳,获得10
1秒前
1秒前
执着的风华完成签到,获得积分10
1秒前
光之晨曦完成签到,获得积分10
2秒前
2秒前
2秒前
隐形曼青应助Chris采纳,获得100
2秒前
远扬关注了科研通微信公众号
2秒前
程文轩发布了新的文献求助10
2秒前
啦啦啦关注了科研通微信公众号
2秒前
wx2360ouc完成签到 ,获得积分10
3秒前
NIUBEN完成签到,获得积分10
3秒前
3秒前
Lynn完成签到,获得积分10
3秒前
乔钰涵发布了新的文献求助10
4秒前
伶俐骁发布了新的文献求助10
4秒前
4秒前
思辰。完成签到,获得积分10
4秒前
5秒前
61x发布了新的文献求助10
5秒前
5秒前
6秒前
赘婿应助风的记忆采纳,获得10
6秒前
腼腆的缘分完成签到,获得积分10
6秒前
无花果应助玥越采纳,获得10
6秒前
李爱国应助11采纳,获得30
6秒前
6秒前
斯文的道罡完成签到,获得积分10
7秒前
谥輄发布了新的文献求助10
7秒前
ZSR发布了新的文献求助10
8秒前
吐泡泡完成签到,获得积分10
8秒前
8秒前
pite发布了新的文献求助10
9秒前
北林完成签到,获得积分10
9秒前
Owen应助leon采纳,获得10
10秒前
10秒前
xqing完成签到,获得积分10
10秒前
小二郎应助冷傲含海采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5523959
求助须知:如何正确求助?哪些是违规求助? 4614601
关于积分的说明 14543506
捐赠科研通 4552337
什么是DOI,文献DOI怎么找? 2494743
邀请新用户注册赠送积分活动 1475510
关于科研通互助平台的介绍 1447207