A Nomogram for Predicting In‐Hospital Mortality in Critically Ill Patients With Myocardial Infarction and Atrial Fibrillation

列线图 医学 接收机工作特性 心房颤动 逻辑回归 心肌梗塞 曲线下面积 内科学 重症监护 回顾性队列研究 心脏病学 急诊医学 重症监护医学
作者
Wan Loo Tan,R. Duan,Chan Zeng,Ziwei Yang,Dai Li,Xu Tingting,Ling Zhu,Danghong Sun
出处
期刊:Nursing in critical care [Wiley]
卷期号:30 (4)
标识
DOI:10.1111/nicc.70116
摘要

ABSTRACT Background Myocardial infarction (MI) and atrial fibrillation (AF), a common complication during hospitalisation of critically ill MI patients, have a complex and close bidirectional relationship, and the two frequently occur together. Aim To develop a nomogram to predict the risk of in‐hospital mortality in critically ill patients with MI and AF. Study Design For this retrospective cohort research, we selected 1240 critically ill patients with AF and MI from the Medical Information Mart for Intensive Care‐IV (MIMIC ‐ IV) (version 3.1) database. A 7:3 random division of the dataset was made into training and test sets. LASSO regression plus 10‐fold cross‐validation was used to screen predictors, and multivariate logistic regression was used to build prediction models using the screened predictors. We assessed our outcome model using the calibration curve and the area under the receiver operating characteristic curve ( AUROC ). We assessed the clinical usefulness of the predictive models using decision curve analysis ( DCA ). Results This study included 1240 patients with both MI and AF, of whom 212 died during hospitalisation, yielding a mortality rate of 17.1%. The final seven predictors were chronic obstructive pulmonary disease, continuous renal replacement therapy, metoprolol, vasopressor use, red blood cell distribution width, anion gap and blood urea nitrogen. The model achieved an Area under the receiver operating characteristic curve (AUC) of 0.802 in the training set and 0.814 in the test set. Both calibration and decision curves demonstrated good model performance. Conclusion For patients with MI and AF, this nomogram offers an early evaluation of the risk of inpatient death. Relevance to Clinical Practice By utilising risk prediction algorithms, nurses may precisely evaluate the risk of early mortality in patients with MI and AF promptly and execute targeted preventative interventions. This method enhances nursing decision‐making and resource distribution, demonstrating clinical significance in critical care practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Masetti1完成签到 ,获得积分10
1秒前
情怀应助Eason_C采纳,获得10
3秒前
4秒前
曾经绿兰完成签到,获得积分10
4秒前
5秒前
海盐气泡水完成签到,获得积分10
6秒前
NexusExplorer应助kylie采纳,获得10
7秒前
melone完成签到,获得积分10
8秒前
muzi发布了新的文献求助10
8秒前
9秒前
慕青应助YangY采纳,获得10
9秒前
所所应助不爱吃鱼的猫采纳,获得10
10秒前
Eason_C完成签到,获得积分10
11秒前
11秒前
14秒前
周涛完成签到,获得积分10
14秒前
Rico发布了新的文献求助20
16秒前
16秒前
吃猫的鱼完成签到,获得积分10
17秒前
王香香发布了新的文献求助10
17秒前
Parsifal发布了新的文献求助30
18秒前
18秒前
陈肖楠完成签到,获得积分10
19秒前
kay发布了新的文献求助20
19秒前
20秒前
马嘉琪完成签到,获得积分10
22秒前
22秒前
好好发布了新的文献求助10
23秒前
23秒前
26秒前
nicoco完成签到,获得积分10
27秒前
YangY发布了新的文献求助10
27秒前
斯文败类应助miya采纳,获得30
28秒前
chen完成签到,获得积分10
28秒前
28秒前
29秒前
小心翼翼完成签到,获得积分10
29秒前
大花卷完成签到,获得积分10
30秒前
高乾飞发布了新的文献求助10
30秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4088347
求助须知:如何正确求助?哪些是违规求助? 3627140
关于积分的说明 11500964
捐赠科研通 3339861
什么是DOI,文献DOI怎么找? 1836127
邀请新用户注册赠送积分活动 904253
科研通“疑难数据库(出版商)”最低求助积分说明 822156