Prediction of antimicrobial resistance in Klebsiella pneumoniae using genomic and metagenomic next-generation sequencing data

肺炎克雷伯菌 抗菌剂 DNA测序 基因组 抗生素耐药性 计算生物学 抗药性 微生物学 生物 抗生素 遗传学 基因 大肠杆菌
作者
Xun Zhou,Ming Yang,Fangyuan Chen,Leilei Wang,Peng Han,Zhi Jiang,Siquan Shen,Guanhua Rao,Fan Yang
出处
期刊:Journal of Antimicrobial Chemotherapy [Oxford University Press]
卷期号:79 (10): 2509-2517 被引量:1
标识
DOI:10.1093/jac/dkae248
摘要

Abstract Objectives Klebsiella pneumoniae is a significant pathogen with increasing resistance and high mortality rates. Conventional antibiotic susceptibility testing methods are time-consuming. Next-generation sequencing has shown promise for predicting antimicrobial resistance (AMR). This study aims to develop prediction models using whole-genome sequencing data and assess their feasibility with metagenomic next-generation sequencing data from clinical samples. Methods On the basis of 4170 K. pneumoniae genomes, the main genetic characteristics associated with AMR were identified using a LASSO regression model. Consequently, the prediction model was established, validated and optimized using clinical isolate read simulation sequences. To evaluate the efficacy of the model, clinical specimens were collected. Results Four predictive models for amikacin, ciprofloxacin, levofloxacin, and piperacillin/tazobactam, initially had positive predictive values (PPVs) of 92%, 98%, 99%, 94%, respectively, when they were originally constructed. When applied to clinical specimens, their PPVs were 96%, 96%, 95%, and 100%, respectively. Meanwhile, there were negative predictive values (NPVs) of 100% for ciprofloxacin and levofloxacin, and ‘not applicable’ (NA) for amikacin and piperacillin/tazobactam. Our method achieved antibacterial phenotype classification accuracy rates of 95.92% for amikacin, 96.15% for ciprofloxacin, 95.31% for levofloxacin and 100% for piperacillin/tazobactam. The sequence-based prediction antibiotic susceptibility testing (AST) reported results in an average time of 19.5 h, compared with the 67.9 h needed for culture-based AST, resulting in a significant reduction of 48.4 h. Conclusions These preliminary results demonstrated that the performance of prediction model for a clinically significant antimicrobial–species pair was comparable to that of phenotypic methods, thereby encouraging the expansion of sequence-based susceptibility prediction and its clinical validation and application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
热心市民小红花应助liam采纳,获得10
1秒前
2秒前
Dguojiang完成签到,获得积分10
3秒前
六亿完成签到,获得积分20
4秒前
归海沛山发布了新的文献求助10
4秒前
SYLH应助雪山飞龙采纳,获得10
5秒前
FashionBoy应助阿斯顿采纳,获得10
5秒前
NARUTO发布了新的文献求助10
6秒前
哈哈哈完成签到,获得积分10
7秒前
fsznc1完成签到 ,获得积分0
7秒前
小太阳发布了新的文献求助10
9秒前
冯岗完成签到,获得积分10
10秒前
聪明花生发布了新的文献求助10
12秒前
12秒前
13秒前
南宫书芹发布了新的文献求助10
14秒前
balalala完成签到,获得积分10
15秒前
研友_X89o6n完成签到,获得积分10
15秒前
冬日可爱完成签到,获得积分10
16秒前
17秒前
shee发布了新的文献求助10
17秒前
18秒前
汉堡包应助哈哈哈哈采纳,获得10
18秒前
无花果应助HuiFei采纳,获得10
19秒前
木木发布了新的文献求助10
19秒前
帆帆羊发布了新的文献求助10
22秒前
田様应助LIO采纳,获得10
22秒前
22秒前
执着梦柏发布了新的文献求助20
24秒前
Ava应助歌尔德蒙采纳,获得10
24秒前
酷酷的紫南完成签到 ,获得积分10
25秒前
25秒前
SciGPT应助pianoboy采纳,获得10
26秒前
26秒前
26秒前
大师现在发布了新的文献求助20
28秒前
华仔应助lc采纳,获得10
28秒前
HuiFei完成签到,获得积分10
29秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842655
求助须知:如何正确求助?哪些是违规求助? 3384676
关于积分的说明 10536643
捐赠科研通 3105227
什么是DOI,文献DOI怎么找? 1710094
邀请新用户注册赠送积分活动 823493
科研通“疑难数据库(出版商)”最低求助积分说明 774110