土壤碳
环境科学
表土
碳纤维
固碳
气候变化
总有机碳
颗粒有机碳
全球变暖
碳循环
土壤有机质
环境化学
土壤科学
生态系统
土壤水分
地质学
二氧化碳
生态学
化学
营养物
海洋学
有机化学
材料科学
浮游植物
生物
复合数
复合材料
作者
Paloma Díaz‐Martínez,Fernando T. Maestre,Eduardo Moreno‐Jiménez,Manuel Delgado‐Baquerizo,David J. Eldridge,Hugo Saíz,Nicolas Gross,Yoann Le Bagousse‐Pinguet,Beatriz Gozalo,Victoria Ochoa,Emilio Guirado,Miguel García‐Gómez,Enrique Valencia,Sergio Asensio,Miguel Berdugo,Jaime Martínez‐Valderrama,Betty J. Mendoza,Juan Carlos García‐Gil,Claudio Zaccone,Marco Panettieri
标识
DOI:10.1038/s41558-024-02087-y
摘要
Mineral-associated organic carbon (MAOC) constitutes a major fraction of global soil carbon and is assumed less sensitive to climate than particulate organic carbon (POC) due to protection by minerals. Despite its importance for long-term carbon storage, the response of MAOC to changing climates in drylands, which cover more than 40% of the global land area, remains unexplored. Here we assess topsoil organic carbon fractions across global drylands using a standardized field survey in 326 plots from 25 countries and 6 continents. We find that soil biogeochemistry explained the majority of variation in both MAOC and POC. Both carbon fractions decreased with increases in mean annual temperature and reductions in precipitation, with MAOC responding similarly to POC. Therefore, our results suggest that ongoing climate warming and aridification may result in unforeseen carbon losses across global drylands, and that the protective role of minerals may not dampen these effects. Protection afforded by inorganic minerals is assumed to make mineral-associated organic carbon less susceptible to loss under climate change than particulate organic carbon. However, a global study of soil organic carbon from drylands suggests that this is not the case.
科研通智能强力驱动
Strongly Powered by AbleSci AI