Pyramid diffractive optical networks for unidirectional image magnification and demagnification

放大倍数 光学 棱锥(几何) 波长 计算机科学 物理
作者
Bijie Bai,Xilin Yang,Tianyi Gan,Jingxi Li,Deniz Mengü,Mona Jarrahi,Aydogan Özcan
出处
期刊:Light-Science & Applications [Springer Nature]
卷期号:13 (1) 被引量:4
标识
DOI:10.1038/s41377-024-01543-w
摘要

Abstract Diffractive deep neural networks (D 2 NNs) are composed of successive transmissive layers optimized using supervised deep learning to all-optically implement various computational tasks between an input and output field-of-view. Here, we present a pyramid-structured diffractive optical network design (which we term P-D 2 NN), optimized specifically for unidirectional image magnification and demagnification. In this design, the diffractive layers are pyramidally scaled in alignment with the direction of the image magnification or demagnification. This P-D 2 NN design creates high-fidelity magnified or demagnified images in only one direction, while inhibiting the image formation in the opposite direction—achieving the desired unidirectional imaging operation using a much smaller number of diffractive degrees of freedom within the optical processor volume. Furthermore, the P-D 2 NN design maintains its unidirectional image magnification/demagnification functionality across a large band of illumination wavelengths despite being trained with a single wavelength. We also designed a wavelength-multiplexed P-D 2 NN, where a unidirectional magnifier and a unidirectional demagnifier operate simultaneously in opposite directions, at two distinct illumination wavelengths. Furthermore, we demonstrate that by cascading multiple unidirectional P-D 2 NN modules, we can achieve higher magnification factors. The efficacy of the P-D 2 NN architecture was also validated experimentally using terahertz illumination, successfully matching our numerical simulations. P-D 2 NN offers a physics-inspired strategy for designing task-specific visual processors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
十一发布了新的文献求助10
1秒前
喜洋洋完成签到 ,获得积分10
1秒前
方南莲完成签到,获得积分10
1秒前
2秒前
逐风发布了新的文献求助10
3秒前
柯彦完成签到 ,获得积分10
4秒前
up完成签到,获得积分10
6秒前
10秒前
奥利奥爱好者完成签到,获得积分10
11秒前
烤鸭发布了新的文献求助30
12秒前
DHY完成签到,获得积分10
13秒前
玩是罪恶的完成签到,获得积分10
14秒前
SYLH应助平常甜瓜采纳,获得10
18秒前
壮观的凝阳完成签到,获得积分20
18秒前
MQ发布了新的文献求助10
19秒前
19秒前
orixero应助可爱的番薯采纳,获得10
20秒前
20秒前
郦稀完成签到,获得积分10
22秒前
23秒前
youyouyou发布了新的文献求助10
23秒前
Betty发布了新的文献求助10
24秒前
中单阿飞发布了新的文献求助10
25秒前
26秒前
louise发布了新的文献求助10
30秒前
31秒前
31秒前
ll完成签到 ,获得积分10
32秒前
nini完成签到,获得积分10
35秒前
36秒前
36秒前
36秒前
852应助等待的谷波采纳,获得10
37秒前
37秒前
自信的一兰完成签到,获得积分20
37秒前
Betty完成签到,获得积分10
39秒前
falcon完成签到,获得积分10
39秒前
张成协发布了新的文献求助10
40秒前
鹏鹏完成签到,获得积分10
40秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818977
求助须知:如何正确求助?哪些是违规求助? 3362055
关于积分的说明 10415138
捐赠科研通 3080350
什么是DOI,文献DOI怎么找? 1694313
邀请新用户注册赠送积分活动 814609
科研通“疑难数据库(出版商)”最低求助积分说明 768365