Research on On-Line Monitoring of Grinding Wheel Wear Based on Multi-Sensor Fusion

砂轮 研磨 信号(编程语言) 刀具磨损 汽车工程 支持向量机 计算机科学 材料科学 机械工程 工程类 人工智能 机械加工 程序设计语言
作者
Jingsong Duan,Guohua Cao,Guoqing Ma,Zhenglin Yu,Changshun Shao
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (18): 5888-5888 被引量:2
标识
DOI:10.3390/s24185888
摘要

The state of a grinding wheel directly affects the surface quality of the workpiece. The monitoring of grinding wheel wear state can allow one to efficiently identify grinding wheel wear information and to timely and effectively trim the grinding wheel. At present, on-line monitoring technology using specific sensor signals can detect abnormal grinding wheel wear in a timely manner. However, due to the non-linearity and complexity of the grinding wheel wear process, as well as the interference and noise of the sensor signal, the accuracy and reliability of on-line monitoring technology still need to be improved. In this paper, an intelligent monitoring system based on multi-sensor fusion is established, and this system can be used for precise grinding wheel wear monitoring. The proposed system focuses on titanium alloy, a typical difficult-to-process aerospace material, and addresses the issue of low on-line monitoring accuracy found in traditional single-sensor systems. Additionally, a multi-eigenvalue fusion algorithm based on an improved support vector machine (SVM) is proposed. In this study, the mean square value of the wavelet packet decomposition coefficient of the acoustic emission signal, the grinding force ratio of the force signal, and the effective value of the vibration signal were taken as inputs for the improved support vector machine, and the recognition strategy was adjusted using the entropy weight evaluation method. A high-precision grinding machine was used to carry out multiple sets of grinding wheel wear experiments. After being processed by the multi-sensor integrated precision grinding wheel wear intelligent monitoring system, the collected signals can accurately reflect the grinding wheel wear state, and the monitoring accuracy can reach more than 92%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助昭奚采纳,获得10
1秒前
1秒前
orixero应助我怕好时光采纳,获得10
3秒前
丘比特应助安详的夜山采纳,获得10
3秒前
xzy998发布了新的文献求助10
4秒前
仲乔妹发布了新的文献求助10
4秒前
6秒前
充电宝应助迷你的思真采纳,获得10
7秒前
aaa完成签到,获得积分10
7秒前
8秒前
蔷薇发布了新的文献求助10
10秒前
10秒前
ellie0125完成签到,获得积分10
10秒前
12秒前
Wri发布了新的文献求助10
13秒前
13秒前
14秒前
独特的易形完成签到,获得积分10
16秒前
zengrong发布了新的文献求助10
16秒前
16秒前
苹果小玉发布了新的文献求助10
17秒前
felix发布了新的文献求助30
17秒前
18秒前
甜蜜乐松发布了新的文献求助10
20秒前
一博博士发布了新的文献求助30
20秒前
FashionBoy应助Ling采纳,获得10
20秒前
YMH完成签到,获得积分10
21秒前
脑洞疼应助刺槐采纳,获得10
21秒前
22秒前
22秒前
23秒前
00完成签到,获得积分10
24秒前
Weiweiweixiao完成签到,获得积分10
24秒前
猪猪hero发布了新的文献求助10
26秒前
LLY完成签到,获得积分20
26秒前
一博博士完成签到,获得积分10
27秒前
苹果饼干应助大气时光采纳,获得10
30秒前
30秒前
31秒前
我怕好时光完成签到,获得积分10
32秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
Magnum Contact Sheets 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897177
求助须知:如何正确求助?哪些是违规求助? 3441069
关于积分的说明 10819846
捐赠科研通 3166066
什么是DOI,文献DOI怎么找? 1749153
邀请新用户注册赠送积分活动 845149
科研通“疑难数据库(出版商)”最低求助积分说明 788437