Scalable Layered Heterogeneous Hydrogel Fibers with Strain‐Induced Crystallization for Tough, Resilient, and Highly Conductive Soft Bioelectronics

材料科学 自愈水凝胶 生物电子学 韧性 弹性(材料科学) 导电体 电容感应 纳米技术 复合材料 导电聚合物 聚合物 计算机科学 生物传感器 操作系统 高分子化学
作者
Pengle Cao,Yu Wang,Jian Yang,Shichao Niu,Xinglong Pan,Wanheng Lu,Luhong Li,Yiming Xu,Jiabin Cui,Ghim Wei Ho,Xiao‐Qiao Wang
出处
期刊:Advanced Materials [Wiley]
卷期号:36 (48) 被引量:17
标识
DOI:10.1002/adma.202409632
摘要

Abstract The advancement of soft bioelectronics hinges critically on the electromechanical properties of hydrogels. Despite ongoing research into diverse material and structural strategies to enhance these properties, producing hydrogels that are simultaneously tough, resilient, and highly conductive for long‐term, dynamic physiological monitoring remains a formidable challenge. Here, a strategy utilizing scalable layered heterogeneous hydrogel fibers (LHHFs) is introduced that enables synergistic electromechanical modulation of hydrogels. High toughness (1.4 MJ m −3 ) and resilience (over 92% recovery from 200% strain) of LHHFs are achieved through a damage‐free toughening mechanism that involves dense long‐chain entanglements and reversible strain‐induced crystallization of sodium polyacrylate. The unique symmetrical layered structure of LHHFs, featuring distinct electrical and mechanical functional layers, facilitates the mixing of multi‐walled carbon nanotubes to significantly enhance electrical conductivity (192.7 S m −1 ) without compromising toughness and resilience. Furthermore, high‐performance LHHF capacitive iontronic strain/pressure sensors and epidermal electrodes are developed, capable of accurately and stably capturing biomechanical and bioelectrical signals from the human body under long‐term, dynamic conditions. The LHHF offers a promising route for developing hydrogels with uniquely integrated electromechanical attributes, advancing practical wearable healthcare applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助酒温书生采纳,获得20
刚刚
半夏发布了新的文献求助10
刚刚
刚刚
赵西里完成签到,获得积分10
刚刚
刚刚
刚刚
浮游应助ws采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
CipherSage应助巴拉巴拉采纳,获得10
1秒前
研友_Zlx3aZ完成签到,获得积分10
1秒前
wuhaoqingnian完成签到,获得积分10
1秒前
tangyuan发布了新的文献求助10
1秒前
2秒前
浮游应助晚晚采纳,获得10
2秒前
雪白冥茗完成签到 ,获得积分10
3秒前
直率的莺完成签到,获得积分10
3秒前
Hello应助Lucky采纳,获得10
3秒前
JamesPei应助111采纳,获得10
3秒前
4秒前
4秒前
关畅澎完成签到,获得积分10
4秒前
4秒前
非凡梦完成签到,获得积分10
4秒前
lalla发布了新的文献求助50
4秒前
HY完成签到,获得积分10
4秒前
啊宁发布了新的文献求助20
4秒前
屁屁发布了新的文献求助10
5秒前
善学以致用应助qq采纳,获得10
5秒前
KokuSeito发布了新的文献求助10
5秒前
嘻嘻发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
思源应助科研通管家采纳,获得10
7秒前
jie酱拌面应助小鲤鱼采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5167192
求助须知:如何正确求助?哪些是违规求助? 4359127
关于积分的说明 13572359
捐赠科研通 4205589
什么是DOI,文献DOI怎么找? 2306477
邀请新用户注册赠送积分活动 1306190
关于科研通互助平台的介绍 1252700