脑深部刺激
神经学
神经科学
刺激
睡眠(系统调用)
运动障碍
医学
脑刺激
小脑
脑功能
心理学
内科学
帕金森病
计算机科学
操作系统
疾病
作者
Luis E. Salazar Leon,Linda Kim,Roy V. Sillitoe
出处
期刊:Neurotherapeutics
[Springer Nature]
日期:2024-10-01
卷期号:21 (6): e00467-e00467
被引量:4
标识
DOI:10.1016/j.neurot.2024.e00467
摘要
Dystonia arises with cerebellar dysfunction, which plays a key role in the emergence of multiple pathophysiological deficits that range from abnormal movements and postures to disrupted sleep. Current therapeutic interventions typically do not simultaneously address both the motor and non-motor symptoms of dystonia, underscoring the necessity for a multi-functional therapeutic strategy. Deep brain stimulation (DBS) is effectively used to reduce motor symptoms in dystonia, with existing parallel evidence arguing for its potential to correct sleep disturbances. However, the simultaneous efficacy of DBS for improving sleep and motor dysfunction, specifically by targeting the cerebellum, remains underexplored. Here, we test the effect of cerebellar DBS in two genetic mouse models with dystonia that exhibit sleep defects-Ptf1aCre;Vglut2fx/fx and Pdx1Cre;Vglut2fx/fx-which have overlapping cerebellar circuit miswiring defects but differing severity in motor phenotypes. By targeting DBS to the fiber tracts located between the cerebellar fastigial and the interposed nuclei (FN + INT-DBS), we modulated sleep dysfunction by enhancing sleep quality and timing. This DBS paradigm improved wakefulness and rapid eye movement sleep in both mutants. Additionally, the latency to reach REM sleep, a deficit observed in human dystonia patients, was reduced in both models. Cerebellar DBS also induced alterations in the electrocorticogram (ECoG) patterns that define sleep states. As expected, DBS reduced the severe dystonic twisting motor symptoms that are observed in the Ptf1aCre;Vglut2fx/fx mice. These findings highlight the potential for using cerebellar DBS to simultaneously improve sleep and reduce motor dysfunction in dystonia and uncover its potential as a dual-effect in vivo therapeutic strategy.
科研通智能强力驱动
Strongly Powered by AbleSci AI