聚脲
复合数
涂层
材料科学
复合材料
工程类
结构工程
法律工程学
作者
Bingqi Li,Jilei Zhang,Xiaonan Liu,Tianyi Meng
标识
DOI:10.1108/ec-01-2024-0011
摘要
Purpose Multilayer composite liner structures are the primary structural form of hydraulic tunnels. However, the bearing mechanism of multilayer composite liners has not been investigated thoroughly. Many existing design schemes do not properly achieve a balance between structural safety, anti-seepage capacity, and cost effectiveness. Thus, a new composite liner structure type and its theoretical model was proposed. Design/methodology/approach A novel hydraulic tunnel composite liner structure with a polyurea spray coating interlayer was proposed in this study. A theoretical model based on the state-space method was developed and verified using FEM models and existing theoretical models. Parametric analysis was conducted based on the theoretical model to investigate the influence of various variables, including interfacial shear stiffness, inner liner thickness, and outer liner elastic modulus. Findings It was concluded that the proposed theoretical model can be used successfully to calculate multilayer composite liner structures with high calculation efficiency. The overall deformation stiffness of the composite liner system increased with the interfacial shear stiffness. The sprayed coating interlayer significantly affects the residual force distribution between the outer and inner liners, which can also be affected by the adjustment of the thickness of the outer and inner liners. Thus, attention should be paid to these factors in the rational design of the proposed composite liner system. Originality/value With the development of China’s water conservancy projects, complex geological conditions, high surrounding rock stress, high internal and external water pressures, and other unique application scenarios have gradually increased. This places higher requirements on the bearing performance and impermeability of hydraulic tunnel lining structures. On the other hand, conventional hydraulic tunnel lining structures can hardly achieve a satisfactory balance between economy, structural safety, and impermeability. Thus, the proposed structure has the potential to be used in a wide range of applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI