亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multi-Task Transformer With Local-Global Feature Interaction and Multiple Tumoral Region Guidance for Breast Cancer Diagnosis

分割 乳腺癌 计算机科学 杠杆(统计) 乳腺超声检查 机器学习 人工智能 编码器 深度学习 医学 模式识别(心理学) 癌症 乳腺摄影术 内科学 操作系统
作者
Yi Zhang,Bolun Zeng,Jia Li,Yuanyi Zheng,Xiaojun Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 6840-6853 被引量:2
标识
DOI:10.1109/jbhi.2024.3454000
摘要

Breast cancer, as a malignant tumor disease, has maintained high incidence and mortality rates over the years. Ultrasonography is one of the primary methods for diagnosing early-stage breast cancer. However, correctly interpreting breast ultrasound images requires massive time from physicians with specialized knowledge and extensive experience. Recently, deep learning-based method have made significant advancements in breast tumor segmentation and classification due to their powerful fitting capabilities. However, most existing methods focus on performing one of these tasks separately, and often failing to effectively leverage information from specific tumor-related areas that hold considerable diagnostic value. In this study, we propose a multi-task network with local-global feature interaction and multiple tumoral region guidance for breast ultrasound-based tumor segmentation and classification. Specifically, we construct a dual-stream encoder, paralleling CNN and Transformer, to facilitate hierarchical interaction and fusion of local and global features. This architecture enables each stream to capitalize on the strengths of the other while preserving its unique characteristics. Moreover, we design a multi-tumoral region guidance module to explicitly learn long-range non-local dependencies within intra-tumoral and peri-tumoral regions from spatial domain, thus providing interpretable cues beneficial for classification. Experimental results on two breast ultrasound datasets show that our network outperforms state-of-the-art methods in tumor segmentation and classification tasks. Compared with the second-best competitive method, our network improves the diagnosis accuracy from 73.64% to 80.21% on a large external validation dataset, which demonstrates its superior generalization capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
Benhnhk21发布了新的文献求助10
16秒前
精明凡双应助科研通管家采纳,获得10
18秒前
精明凡双应助科研通管家采纳,获得10
18秒前
30秒前
54秒前
哭泣灯泡完成签到,获得积分10
1分钟前
脑洞疼应助shanks采纳,获得10
1分钟前
shanks完成签到,获得积分20
1分钟前
称心的高丽完成签到 ,获得积分10
1分钟前
清秀尔竹完成签到 ,获得积分10
1分钟前
JamesPei应助葛力采纳,获得10
2分钟前
2分钟前
爆米花应助lovelife采纳,获得10
2分钟前
3分钟前
3分钟前
lovelife发布了新的文献求助10
3分钟前
小全完成签到,获得积分10
3分钟前
我是老大应助科研兄采纳,获得10
4分钟前
精明凡双应助科研通管家采纳,获得10
4分钟前
精明凡双应助科研通管家采纳,获得10
4分钟前
精明凡双应助科研通管家采纳,获得10
4分钟前
Virtual应助科研通管家采纳,获得20
4分钟前
充电宝应助jin采纳,获得30
4分钟前
烟花应助亭瞳采纳,获得10
4分钟前
4分钟前
亭瞳发布了新的文献求助10
4分钟前
亭瞳完成签到,获得积分10
4分钟前
4分钟前
5分钟前
charih完成签到 ,获得积分10
5分钟前
5分钟前
jin完成签到,获得积分10
5分钟前
程秋实发布了新的文献求助10
5分钟前
jin发布了新的文献求助30
5分钟前
烟花应助程秋实采纳,获得10
5分钟前
6分钟前
6分钟前
Virtual应助科研通管家采纳,获得20
6分钟前
Virtual应助科研通管家采纳,获得20
6分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4513331
求助须知:如何正确求助?哪些是违规求助? 3958553
关于积分的说明 12270406
捐赠科研通 3620075
什么是DOI,文献DOI怎么找? 1992238
邀请新用户注册赠送积分活动 1028484
科研通“疑难数据库(出版商)”最低求助积分说明 919625