Using ATCLSTM-Kcr to predict and generate the human lysine crotonylation database

计算机科学 水准点(测量) 人工智能 稳健性(进化) 计算生物学 机器学习 生物 基因 遗传学 大地测量学 地理
作者
Yehong Yang,Songfeng Wu,Jie Kong,Yunping Zhu,Jiang-Feng Liu,Juntao Yang
出处
期刊:Journal of Proteomics [Elsevier BV]
卷期号:281: 104905-104905 被引量:3
标识
DOI:10.1016/j.jprot.2023.104905
摘要

Lysine crotonylation (Kcr) is an evolutionarily conserved protein post-translational modifications, which plays an important role in cellular physiology and pathology, such as chromatin remodeling, gene transcription regulation, telomere maintenance, inflammation, and cancer. Tandem mass spectrometry (LC-MS/MS) has been used to identify the global Kcr profiling of human, at the same time, many computing methods have been developed to predict Kcr sites without high experiment cost. Deep learning network solves the problem of manual feature design and selection in traditional machine learning (NLP), especially the algorithms in natural language processing which treated peptides as sentences, thus can extract more in-depth information and obtain higher accuracy. In this work, we establish a Kcr prediction model named ATCLSTM-Kcr which use self-attention mechanism combined with NLP method to highlight the important features and further capture the internal correlation of the features, to realize the feature enhancement and noise reduction modules of the model. Independent tests have proved that ATCLSTM-Kcr has better accuracy and robustness than similar prediction tools. Then, we design pipeline to generate MS-based benchmark dataset to avoid the false negatives caused by MS-detectability and improve the sensitivity of Kcr prediction. Finally, we develop a Human Lysine Crotonylation Database (HLCD) which using ATCLSTM-Kcr and the two representative deep learning models to score all lysine sites of human proteome, and annotate all Kcr sites identified by MS of current published literatures. HLCD provides an integrated platform for human Kcr sites prediction and screening through multiple prediction scores and conditions, and can be accessed on the website:www.urimarker.com/HLCD/. Lysine crotonylation (Kcr) plays an important role in cellular physiology and pathology, such as chromatin remodeling, gene transcription regulation and cancer. To better elucidate the molecular mechanisms of crotonylation and reduce the high experimental cost, we establish a deep learning Kcr prediction model and solve the problem of false negatives caused by the detectability of mass spectrometry (MS). Finally, we develop a Human Lysine Crotonylation Database to score all lysine sites of human proteome, and annotate all Kcr sites identified by MS of current published literatures. Our work provides a convenient platform for human Kcr sites prediction and screening through multiple prediction scores and conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助微弱de胖头采纳,获得10
1秒前
逸龙完成签到,获得积分10
1秒前
Stalin发布了新的文献求助10
2秒前
CipherSage应助想想采纳,获得20
2秒前
dd完成签到 ,获得积分10
2秒前
3秒前
vv完成签到 ,获得积分10
3秒前
可爱的函函应助li采纳,获得30
3秒前
5秒前
由清涟完成签到,获得积分10
5秒前
玩命的森森完成签到,获得积分10
5秒前
冰柠檬完成签到,获得积分20
5秒前
雨落瑾年完成签到,获得积分10
6秒前
AHR完成签到,获得积分10
6秒前
陈思完成签到,获得积分10
6秒前
来活完成签到,获得积分10
8秒前
shun完成签到,获得积分10
8秒前
9秒前
狂野的河马完成签到,获得积分10
9秒前
勤奋的松鼠完成签到,获得积分10
10秒前
孙成成完成签到 ,获得积分10
10秒前
奋斗的元珊完成签到,获得积分10
10秒前
思源应助AHR采纳,获得10
11秒前
背后的鹭洋完成签到,获得积分10
11秒前
11秒前
淡淡的发卡完成签到,获得积分10
12秒前
12秒前
Hancock完成签到 ,获得积分10
12秒前
暗黑同学完成签到,获得积分10
13秒前
16秒前
yuchao_0110发布了新的文献求助30
16秒前
郭京京发布了新的文献求助10
16秒前
我爱学习完成签到,获得积分10
16秒前
科研通AI5应助Stalin采纳,获得10
17秒前
QinGY发布了新的文献求助10
17秒前
潇洒完成签到,获得积分10
18秒前
Lucas应助CY采纳,获得10
18秒前
19秒前
清秀龙猫完成签到 ,获得积分10
20秒前
Jun完成签到 ,获得积分10
20秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801165
求助须知:如何正确求助?哪些是违规求助? 3346853
关于积分的说明 10330624
捐赠科研通 3063166
什么是DOI,文献DOI怎么找? 1681445
邀请新用户注册赠送积分活动 807567
科研通“疑难数据库(出版商)”最低求助积分说明 763728