Using ATCLSTM-Kcr to predict and generate the human lysine crotonylation database

计算机科学 水准点(测量) 人工智能 稳健性(进化) 计算生物学 机器学习 生物 基因 遗传学 大地测量学 地理
作者
Yehong Yang,Songfeng Wu,Jie Kong,Yunping Zhu,Jiang-Feng Liu,Juntao Yang
出处
期刊:Journal of Proteomics [Elsevier BV]
卷期号:281: 104905-104905 被引量:3
标识
DOI:10.1016/j.jprot.2023.104905
摘要

Lysine crotonylation (Kcr) is an evolutionarily conserved protein post-translational modifications, which plays an important role in cellular physiology and pathology, such as chromatin remodeling, gene transcription regulation, telomere maintenance, inflammation, and cancer. Tandem mass spectrometry (LC-MS/MS) has been used to identify the global Kcr profiling of human, at the same time, many computing methods have been developed to predict Kcr sites without high experiment cost. Deep learning network solves the problem of manual feature design and selection in traditional machine learning (NLP), especially the algorithms in natural language processing which treated peptides as sentences, thus can extract more in-depth information and obtain higher accuracy. In this work, we establish a Kcr prediction model named ATCLSTM-Kcr which use self-attention mechanism combined with NLP method to highlight the important features and further capture the internal correlation of the features, to realize the feature enhancement and noise reduction modules of the model. Independent tests have proved that ATCLSTM-Kcr has better accuracy and robustness than similar prediction tools. Then, we design pipeline to generate MS-based benchmark dataset to avoid the false negatives caused by MS-detectability and improve the sensitivity of Kcr prediction. Finally, we develop a Human Lysine Crotonylation Database (HLCD) which using ATCLSTM-Kcr and the two representative deep learning models to score all lysine sites of human proteome, and annotate all Kcr sites identified by MS of current published literatures. HLCD provides an integrated platform for human Kcr sites prediction and screening through multiple prediction scores and conditions, and can be accessed on the website:www.urimarker.com/HLCD/. Lysine crotonylation (Kcr) plays an important role in cellular physiology and pathology, such as chromatin remodeling, gene transcription regulation and cancer. To better elucidate the molecular mechanisms of crotonylation and reduce the high experimental cost, we establish a deep learning Kcr prediction model and solve the problem of false negatives caused by the detectability of mass spectrometry (MS). Finally, we develop a Human Lysine Crotonylation Database to score all lysine sites of human proteome, and annotate all Kcr sites identified by MS of current published literatures. Our work provides a convenient platform for human Kcr sites prediction and screening through multiple prediction scores and conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
侠客发布了新的文献求助10
刚刚
刚刚
刚刚
孟器应助wocao采纳,获得10
1秒前
陶醉小笼包完成签到 ,获得积分10
1秒前
活力的妙芙完成签到,获得积分10
1秒前
1秒前
1秒前
若木完成签到,获得积分10
2秒前
2秒前
2秒前
浮游应助曈梦采纳,获得10
2秒前
wsh发布了新的文献求助10
2秒前
顾矜应助早日毕业采纳,获得10
2秒前
liaomr发布了新的文献求助10
3秒前
青灿笑完成签到,获得积分10
3秒前
bodhi发布了新的文献求助30
3秒前
3秒前
好好好发布了新的文献求助10
3秒前
3秒前
4秒前
夏侯初发布了新的文献求助10
4秒前
4秒前
风趣的小鸽子完成签到,获得积分10
5秒前
5秒前
杨知意完成签到,获得积分10
5秒前
宇宙边缘打怪兽完成签到,获得积分10
6秒前
认真雅阳发布了新的文献求助10
6秒前
ss发布了新的文献求助10
6秒前
yun789发布了新的文献求助10
6秒前
mll发布了新的文献求助10
6秒前
7秒前
小虎完成签到,获得积分10
7秒前
大意的柚子完成签到,获得积分10
7秒前
7秒前
科目三应助从容的采梦采纳,获得10
8秒前
13664424767发布了新的文献求助10
8秒前
蓝胖胖完成签到,获得积分10
8秒前
嗯呐完成签到,获得积分10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068354
求助须知:如何正确求助?哪些是违规求助? 4289934
关于积分的说明 13365813
捐赠科研通 4109719
什么是DOI,文献DOI怎么找? 2250474
邀请新用户注册赠送积分活动 1255837
关于科研通互助平台的介绍 1188347