Using ATCLSTM-Kcr to predict and generate the human lysine crotonylation database

计算机科学 水准点(测量) 人工智能 稳健性(进化) 计算生物学 机器学习 生物 基因 遗传学 大地测量学 地理
作者
Yehong Yang,Songfeng Wu,Jie Kong,Yunping Zhu,Jiang-Feng Liu,Juntao Yang
出处
期刊:Journal of Proteomics [Elsevier BV]
卷期号:281: 104905-104905 被引量:3
标识
DOI:10.1016/j.jprot.2023.104905
摘要

Lysine crotonylation (Kcr) is an evolutionarily conserved protein post-translational modifications, which plays an important role in cellular physiology and pathology, such as chromatin remodeling, gene transcription regulation, telomere maintenance, inflammation, and cancer. Tandem mass spectrometry (LC-MS/MS) has been used to identify the global Kcr profiling of human, at the same time, many computing methods have been developed to predict Kcr sites without high experiment cost. Deep learning network solves the problem of manual feature design and selection in traditional machine learning (NLP), especially the algorithms in natural language processing which treated peptides as sentences, thus can extract more in-depth information and obtain higher accuracy. In this work, we establish a Kcr prediction model named ATCLSTM-Kcr which use self-attention mechanism combined with NLP method to highlight the important features and further capture the internal correlation of the features, to realize the feature enhancement and noise reduction modules of the model. Independent tests have proved that ATCLSTM-Kcr has better accuracy and robustness than similar prediction tools. Then, we design pipeline to generate MS-based benchmark dataset to avoid the false negatives caused by MS-detectability and improve the sensitivity of Kcr prediction. Finally, we develop a Human Lysine Crotonylation Database (HLCD) which using ATCLSTM-Kcr and the two representative deep learning models to score all lysine sites of human proteome, and annotate all Kcr sites identified by MS of current published literatures. HLCD provides an integrated platform for human Kcr sites prediction and screening through multiple prediction scores and conditions, and can be accessed on the website:www.urimarker.com/HLCD/. Lysine crotonylation (Kcr) plays an important role in cellular physiology and pathology, such as chromatin remodeling, gene transcription regulation and cancer. To better elucidate the molecular mechanisms of crotonylation and reduce the high experimental cost, we establish a deep learning Kcr prediction model and solve the problem of false negatives caused by the detectability of mass spectrometry (MS). Finally, we develop a Human Lysine Crotonylation Database to score all lysine sites of human proteome, and annotate all Kcr sites identified by MS of current published literatures. Our work provides a convenient platform for human Kcr sites prediction and screening through multiple prediction scores and conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆南蕾完成签到,获得积分10
1秒前
大模型应助正直的雨双采纳,获得10
1秒前
悦耳寒云完成签到,获得积分20
1秒前
cat应助jjj采纳,获得1000
1秒前
2秒前
wanci应助如果采纳,获得10
2秒前
alc发布了新的文献求助10
3秒前
lu完成签到,获得积分10
3秒前
4秒前
xhuryts完成签到,获得积分10
4秒前
4秒前
菠菜发布了新的文献求助10
4秒前
ao20000106发布了新的文献求助10
5秒前
qianshu完成签到,获得积分10
5秒前
马登完成签到,获得积分10
6秒前
6秒前
AoAoo完成签到,获得积分10
6秒前
6秒前
Bressanone完成签到,获得积分10
7秒前
努恩完成签到,获得积分10
8秒前
背后如雪发布了新的文献求助10
9秒前
橙子完成签到 ,获得积分10
10秒前
绿L完成签到,获得积分10
10秒前
10秒前
浮熙完成签到 ,获得积分10
11秒前
531完成签到,获得积分10
11秒前
12秒前
乖猫要努力应助炸药采纳,获得10
12秒前
Jack完成签到,获得积分10
13秒前
13秒前
leclerc完成签到,获得积分10
14秒前
Amanda完成签到,获得积分10
15秒前
背后如雪完成签到,获得积分10
15秒前
sandyleung完成签到,获得积分10
15秒前
风夏完成签到,获得积分10
15秒前
天天快乐应助杰尼龟采纳,获得10
15秒前
cindy1226完成签到,获得积分10
16秒前
王强完成签到,获得积分10
17秒前
xl1990完成签到,获得积分10
17秒前
18秒前
高分求助中
Nickel, Cobalt and Palladium Catalysed Infarction with Ventricular following rich structural diversity 1000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968608
求助须知:如何正确求助?哪些是违规求助? 3513486
关于积分的说明 11168243
捐赠科研通 3248926
什么是DOI,文献DOI怎么找? 1794540
邀请新用户注册赠送积分活动 875188
科研通“疑难数据库(出版商)”最低求助积分说明 804676