On sparse regression, Lp‐regularization, and automated model discovery

可解释性 杠杆(统计) 计算机科学 正规化(语言学) 机器学习 回归 人工智能 知识抽取 人工神经网络 数据挖掘 数学 统计
作者
Jeremy A. McCulloch,Skyler R. St. Pierre,Kevin Linka,Ellen Kuhl
出处
期刊:International Journal for Numerical Methods in Engineering [Wiley]
卷期号:125 (14) 被引量:44
标识
DOI:10.1002/nme.7481
摘要

Abstract Sparse regression and feature extraction are the cornerstones of knowledge discovery from massive data. Their goal is to discover interpretable and predictive models that provide simple relationships among scientific variables. While the statistical tools for model discovery are well established in the context of linear regression, their generalization to nonlinear regression in material modeling is highly problem‐specific and insufficiently understood. Here we explore the potential of neural networks for automatic model discovery and induce sparsity by a hybrid approach that combines two strategies: regularization and physical constraints. We integrate the concept of L p regularization for subset selection with constitutive neural networks that leverage our domain knowledge in kinematics and thermodynamics. We train our networks with both, synthetic and real data, and perform several thousand discovery runs to infer common guidelines and trends: L 2 regularization or ridge regression is unsuitable for model discovery; L 1 regularization or lasso promotes sparsity, but induces strong bias that may aggressively change the results; only L 0 regularization allows us to transparently fine‐tune the trade‐off between interpretability and predictability, simplicity and accuracy, and bias and variance. With these insights, we demonstrate that L p regularized constitutive neural networks can simultaneously discover both, interpretable models and physically meaningful parameters. We anticipate that our findings will generalize to alternative discovery techniques such as sparse and symbolic regression, and to other domains such as biology, chemistry, or medicine. Our ability to automatically discover material models from data could have tremendous applications in generative material design and open new opportunities to manipulate matter, alter properties of existing materials, and discover new materials with user‐defined properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
czcmh应助Ray采纳,获得30
1秒前
桐桐应助蒸制采纳,获得10
2秒前
33Svan发布了新的文献求助10
2秒前
欣慰的凡儿完成签到,获得积分10
2秒前
2秒前
吕方发布了新的文献求助10
3秒前
石会发发布了新的文献求助10
3秒前
4秒前
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
石会发完成签到,获得积分10
8秒前
二哈完成签到,获得积分10
8秒前
情怀应助Polytide采纳,获得10
8秒前
9秒前
张怡凯完成签到 ,获得积分10
9秒前
科研通AI2S应助珍宝采纳,获得10
9秒前
善学以致用应助珍宝采纳,获得10
9秒前
shanshan3000完成签到,获得积分10
9秒前
10秒前
Zzzzz8666发布了新的文献求助10
10秒前
11秒前
11秒前
科研通AI6应助吴军霄采纳,获得10
12秒前
12秒前
YING发布了新的文献求助10
12秒前
谁家的花花完成签到,获得积分10
12秒前
乔钰涵发布了新的文献求助10
13秒前
笔墨留香发布了新的文献求助10
15秒前
完美世界应助兴奋芷采纳,获得10
16秒前
英雷完成签到,获得积分10
16秒前
huahuaaixuexi完成签到,获得积分10
17秒前
大模型应助6lllpp采纳,获得10
21秒前
CipherSage应助6lllpp采纳,获得10
21秒前
天真的路灯完成签到,获得积分10
22秒前
上官若男应助矮小的白猫采纳,获得10
23秒前
量子星尘发布了新的文献求助10
23秒前
yunyueqixun完成签到,获得积分10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532418
求助须知:如何正确求助?哪些是违规求助? 4621121
关于积分的说明 14577059
捐赠科研通 4561034
什么是DOI,文献DOI怎么找? 2499113
邀请新用户注册赠送积分活动 1479059
关于科研通互助平台的介绍 1450310