Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: A perspective for healthcare organizations

医疗保健 计算机科学 工作流程 知识管理 透明度(行为) 业务 计算机安全 经济增长 经济 数据库
作者
Pouyan Esmaeilzadeh
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:151: 102861-102861 被引量:112
标识
DOI:10.1016/j.artmed.2024.102861
摘要

Healthcare organizations have realized that Artificial intelligence (AI) can provide a competitive edge through personalized patient experiences, improved patient outcomes, early diagnosis, augmented clinician capabilities, enhanced operational efficiencies, or improved medical service accessibility. However, deploying AI-driven tools in the healthcare ecosystem could be challenging. This paper categorizes AI applications in healthcare and comprehensively examines the challenges associated with deploying AI in medical practices at scale. As AI continues to make strides in healthcare, its integration presents various challenges, including production timelines, trust generation, privacy concerns, algorithmic biases, and data scarcity. The paper highlights that flawed business models and wrong workflows in healthcare practices cannot be rectified merely by deploying AI-driven tools. Healthcare organizations should re-evaluate root problems such as misaligned financial incentives (e.g., fee-for-service models), dysfunctional medical workflows (e.g., high rates of patient readmissions), poor care coordination between different providers, fragmented electronic health records systems, and inadequate patient education and engagement models in tandem with AI adoption. This study also explores the need for a cultural shift in viewing AI not as a threat but as an enabler that can enhance healthcare delivery and create new employment opportunities while emphasizing the importance of addressing underlying operational issues. The necessity of investments beyond finance is discussed, emphasizing the importance of human capital, continuous learning, and a supportive environment for AI integration. The paper also highlights the crucial role of clear regulations in building trust, ensuring safety, and guiding the ethical use of AI, calling for coherent frameworks addressing transparency, model accuracy, data quality control, liability, and ethics. Furthermore, this paper underscores the importance of advancing AI literacy within academia to prepare future healthcare professionals for an AI-driven landscape. Through careful navigation and proactive measures addressing these challenges, the healthcare community can harness AI's transformative power responsibly and effectively, revolutionizing healthcare delivery and patient care. The paper concludes with a vision and strategic suggestions for the future of healthcare with AI, emphasizing thoughtful, responsible, and innovative engagement as the pathway to realizing its full potential to unlock immense benefits for healthcare organizations, physicians, nurses, and patients while proactively mitigating risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
不安的夜柳完成签到,获得积分10
3秒前
依依发布了新的文献求助10
4秒前
豆奶发布了新的文献求助10
5秒前
5秒前
zhangyue7777完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
打打应助哎呀采纳,获得10
10秒前
康zai发布了新的文献求助10
12秒前
13秒前
无语大王发布了新的文献求助10
13秒前
13秒前
嘻嘻哈哈发布了新的文献求助10
13秒前
ivvi关注了科研通微信公众号
13秒前
Kwok发布了新的文献求助10
14秒前
星星轨迹发布了新的文献求助10
14秒前
14秒前
14秒前
吨吨发布了新的文献求助10
15秒前
16秒前
bliss完成签到,获得积分10
16秒前
tombo100发布了新的文献求助10
16秒前
19秒前
19秒前
20秒前
青藤完成签到,获得积分10
20秒前
文献求助人完成签到,获得积分10
21秒前
中草药完成签到,获得积分10
21秒前
21秒前
淳于忆曼发布了新的文献求助10
22秒前
LLL完成签到,获得积分10
23秒前
一个西藏发布了新的文献求助10
24秒前
bubu发布了新的文献求助10
24秒前
24秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4093922
求助须知:如何正确求助?哪些是违规求助? 3632452
关于积分的说明 11513393
捐赠科研通 3343138
什么是DOI,文献DOI怎么找? 1837503
邀请新用户注册赠送积分活动 905185
科研通“疑难数据库(出版商)”最低求助积分说明 823027