清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Meta-learning-based sample discrimination framework for improving dynamic selection of classifiers under label noise

噪音(视频) 选择(遗传算法) 样品(材料) 计算机科学 模式识别(心理学) 人工智能 机器学习 色谱法 化学 图像(数学)
作者
Che Xu,Yingming Zhu,Peng Zhu,Longqing Cui
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:295: 111811-111811
标识
DOI:10.1016/j.knosys.2024.111811
摘要

Many real-world datasets encounter the issue of label noise (LN), which significantly degrades the learning performances of classification models. While ensemble learning (EL) has been widely employed to tackle this problem, the Dynamic Selection (DS) of classifiers, as a promising EL branch, is particularly sensitive to LN. To address this issue, a meta-learning-based sample discrimination (MSD) framework is proposed in this paper. Initially, this paper analyzes how LN affects the performance of DS methods through a visual example. Subsequently, under the premise that DS methods are only applicable to samples whose neighborhood is minimally affected or unaffected by LN, a meta-learning dataset is generated in the framework, where the meta-features and meta-labels are derived from the characteristics and the real class distribution of local regions of the samples, respectively. With this dataset, a meta-learner is constructed to determine the feasibility of using DS methods directly to classify a given sample in the presence of LN. For samples that DS methods cannot handle, a novel DS process based on the Genetic Algorithm is designed to mitigate the negative impact of LN. The effectiveness of the MSD framework is validated through extensive experiments conducted on thirty real datasets. These experiments demonstrate the capability of the MSD framework to improve the performances of DS methods across different levels of LN. Furthermore, the efficacy of the proposed MSD framework in handling LN is also highlighted by comparing it with a state-of-the-art method and four mainstream EL methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
dlm关闭了dlm文献求助
21秒前
Cosmosurfer完成签到,获得积分10
28秒前
Chen完成签到 ,获得积分10
43秒前
1437594843完成签到 ,获得积分10
47秒前
紫熊发布了新的文献求助10
51秒前
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助ZHH采纳,获得10
1分钟前
紫熊发布了新的文献求助20
1分钟前
翁雁丝完成签到 ,获得积分10
1分钟前
定西完成签到 ,获得积分20
1分钟前
1分钟前
1分钟前
我是老大应助HS采纳,获得10
2分钟前
2分钟前
嘟嘟52edm完成签到 ,获得积分10
2分钟前
优雅山柏发布了新的文献求助10
2分钟前
tianshanfeihe完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
HS发布了新的文献求助10
2分钟前
xwl9955完成签到 ,获得积分10
2分钟前
naczx完成签到,获得积分0
3分钟前
正直的夏真完成签到 ,获得积分10
3分钟前
方白秋完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
jqliu发布了新的文献求助10
5分钟前
优雅山柏发布了新的文献求助10
5分钟前
Ava应助科研通管家采纳,获得10
5分钟前
5分钟前
yi完成签到 ,获得积分10
6分钟前
elisa828完成签到,获得积分10
6分钟前
Noah完成签到 ,获得积分0
6分钟前
科研通AI5应助Dr_an采纳,获得10
6分钟前
1+1应助elisa828采纳,获得10
6分钟前
7分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837511
求助须知:如何正确求助?哪些是违规求助? 3379609
关于积分的说明 10509981
捐赠科研通 3099208
什么是DOI,文献DOI怎么找? 1707000
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772597