A YOLO-based deep learning model for Real-Time face mask detection via drone surveillance in public spaces

无人机 计算机科学 人工智能 更安全的 背景(考古学) 深度学习 计算机视觉 预处理器 人脸检测 目标检测 特征提取 面部识别系统 计算机安全 模式识别(心理学) 遗传学 生物 古生物学
作者
Salama A. Mostafa,Sharran Ravi,Dilovan Asaad Zebari,Nechirvan Asaad Zebari,Mazin Abed Mohammed,Jan Nedoma,Radek Martínek,Muhammet Deveci,Weiping Ding
出处
期刊:Information Sciences [Elsevier BV]
卷期号:676: 120865-120865 被引量:6
标识
DOI:10.1016/j.ins.2024.120865
摘要

Automating face mask detection in public areas is paramount to maintaining public health, especially in the context of the COVID-19 pandemic. Utilization of technologies such as deep learning and computer vision systems enables effective monitoring of mask compliance, thereby minimizing the risk of virus spread. Real-time detection helps in prompt intervention for and enforcement of the use of masks, thereby preventing potential outbreaks and ensuring compliance with public health guidelines. This method helps save human resources and makes the reinforcement of wearing masks in public areas consistent and objective. Automatic detection of face masks serves as a key tool for preventing the spread of contagious diseases, protecting public health, and creating a safer environment for every person. This study addresses the challenges of real-time face mask detection via drone surveillance in public spaces, with reference to three categories: wearing of mask, incorrect wearing of mask, and no mask. Addressing these challenges entails an efficient and robust object detection and recognition algorithm. This algorithm can deal with a crowd of multiple faces via a mobile camera carried by a mini drone, and performs real-time video processing. Accordingly, this study proposes a You Only Look Once (YOLO) based deep learning C-Mask model for real-time face mask detection and recognition via drone surveillance in public spaces. The C-Mask model aims to operate within a mini drone surveillance system and provide efficient and robust face mask detection. The C-Mask model performs preprocessing, feature extraction, feature generation, feature enhancement, feature selection, and multivariate classification tasks for each face mask detection cycle. The preprocessing task prepares the training and testing data in the form of images for further processing. The feature extraction task is performed using a Convolutional Neural Network (CNN). Moreover, Cross-Stage Partial (CSP) DarkNet53 is used to improve the feature extraction and to facilitate the model's object detection ability. A data augmentation algorithm is used for feature generation to enhance the model's training robustness. The feature enhancement task is performed by applying the Path Aggregation Network (PANet) and Spatial Pyramid Pooling Network (SPPNet) algorithms, which are deployed to enhance the extracted and generated features. The classification task is performed through multi-label classification, wherein each object in an image can belong to multiple classes simultaneously, and the network generates a grid of bounding boxes and corresponding confidence scores for each class. The YOLO-based C-Mask model testing is performed by experimenting with various face mask detection scenarios and with varying mask colors and types, to ensure the efficiency and robustness of the proposed model. The C-Mask model test results show that this model can correctly and effectively detect face masks in real-time video streams under various conditions with an overall accuracy of 92.20%, precision of 92.04, recall of 90.83%, and F1-score of 89.95%, for all the three classes. These high scores have been obtained despite mini drone mobility and camera orientation adjustment substantially affecting face mask detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗人雄完成签到,获得积分10
1秒前
FOOL完成签到,获得积分10
4秒前
chizhi完成签到,获得积分10
4秒前
loin完成签到,获得积分10
4秒前
ATOM发布了新的文献求助10
4秒前
快乐二方完成签到 ,获得积分10
5秒前
6秒前
vvv完成签到 ,获得积分10
7秒前
7秒前
lfydhk发布了新的文献求助10
8秒前
8秒前
suix237完成签到,获得积分10
9秒前
无花果应助任婷采纳,获得10
9秒前
生生发布了新的文献求助10
10秒前
14秒前
19秒前
次我完成签到,获得积分10
20秒前
没有名字完成签到 ,获得积分10
21秒前
chanyi发布了新的文献求助10
24秒前
幸福的鑫鹏完成签到 ,获得积分10
26秒前
quasar发布了新的文献求助10
27秒前
七七完成签到 ,获得积分10
28秒前
SYLH应助炙热的香芦采纳,获得10
28秒前
平平平平完成签到 ,获得积分10
29秒前
阳光雨发布了新的文献求助10
32秒前
项之桃完成签到,获得积分10
33秒前
满眼喜欢遍布星河完成签到,获得积分10
34秒前
生生完成签到,获得积分10
35秒前
科研通AI2S应助炙热的香芦采纳,获得10
36秒前
14062025发布了新的文献求助20
38秒前
wjw完成签到,获得积分10
39秒前
41秒前
细心可乐完成签到 ,获得积分10
41秒前
Driscoll完成签到 ,获得积分10
41秒前
领导范儿应助angelinazh采纳,获得10
41秒前
缥缈的冰旋完成签到,获得积分10
43秒前
Layace发布了新的文献求助10
43秒前
星辰大海应助潇洒映冬采纳,获得10
43秒前
44秒前
hky完成签到,获得积分10
44秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Canon of Insolation and the Ice-age Problem 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3900256
求助须知:如何正确求助?哪些是违规求助? 3444987
关于积分的说明 10837568
捐赠科研通 3170144
什么是DOI,文献DOI怎么找? 1751495
邀请新用户注册赠送积分活动 846722
科研通“疑难数据库(出版商)”最低求助积分说明 789363