清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DSBEAN: An innovative framework for intelligent soybean breeding phenotype analysis based on various main stem structures and deep learning methods

表型 工程类 深度学习 人工智能 生物 计算机科学 遗传学 基因
作者
Zhe Zhang,Xiu Jin,Yuan Rao,Tianyu Wan,Xiaobo Wang,Jiajia Li,Hao Chen,Kanglei Wu,Fanchen Kong,Zhuo Tian,Xing Shao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:224: 109135-109135 被引量:4
标识
DOI:10.1016/j.compag.2024.109135
摘要

Although computer vision technology has demonstrated significant efficiency in rapidly identifying soybean phenotypic traits, traditional methods still effective in accurately distinguishing certain complex phenotypes. To further advance the analysis of soybean phenotypic traits, this study proposed the DSBEAN framework that combined soybean breeding technology and deep learning algorithms from a new perspective to analyze soybean phenotypic traits. The key components of DSBEAN framework were two innovative evaluation indicators: the length ratio of the pod growth area to the main stem (MLR) and the pod density within the pod growth area (PD), which were essential for refining understanding and analysis of soybean phenotypic traits in computer vision perspective. The DSBEAN framework consisted of three sections: 1) Main stem Node Detection and PGA Identification. An improved YOLOv5s model was designed for soybean main stem node detection, pod coordinate extraction, and pod growth area (PGA) partition. 2) Main stem Segmentation. The U-Net model was employed for soybean main stem segmentation. 3) MLR and PD Extraction: The previously identified soybean phenotypes were used to calculate the MLR and PD. To validate the DSBEAN framework, a new soybean image and label dataset (SILD) was constructed, and diverse comparison experiments were performed. From the experimental results, the number of pods predicted based on MLR, PD, and the number of main stem nodes reached a correlation level of 0.93, highlighting the significant potential of the DSBEAN framework for soybean phenotype identification. In addition, the proposed framework had the potential to provide new directions for phenotype identification of other crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
5秒前
陈辉完成签到,获得积分10
6秒前
王饱饱完成签到 ,获得积分10
30秒前
nojego完成签到,获得积分10
35秒前
arsenal完成签到 ,获得积分10
1分钟前
QIU完成签到 ,获得积分10
1分钟前
saddamalsalfi完成签到,获得积分10
1分钟前
1分钟前
TEY完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
滕皓轩发布了新的文献求助30
2分钟前
SYLH应助滕皓轩采纳,获得30
2分钟前
852应助紧张的海露采纳,获得10
2分钟前
蝎子莱莱xth完成签到,获得积分10
2分钟前
明天更好完成签到 ,获得积分10
2分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
2分钟前
Square完成签到,获得积分10
2分钟前
2分钟前
星海种花完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
scm完成签到 ,获得积分10
3分钟前
现实的俊驰完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
心静自然好完成签到 ,获得积分10
3分钟前
3分钟前
小蘑菇应助科研通管家采纳,获得10
3分钟前
Ava应助科研通管家采纳,获得20
3分钟前
宇文非笑完成签到 ,获得积分0
3分钟前
Eri_SCI完成签到 ,获得积分10
4分钟前
雨后完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
Benhnhk21发布了新的文献求助10
4分钟前
4分钟前
黑大侠完成签到 ,获得积分10
4分钟前
景宛白发布了新的文献求助10
4分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843282
求助须知:如何正确求助?哪些是违规求助? 3385530
关于积分的说明 10540738
捐赠科研通 3106138
什么是DOI,文献DOI怎么找? 1710890
邀请新用户注册赠送积分活动 823818
科研通“疑难数据库(出版商)”最低求助积分说明 774308