An Improved Bilevel Algorithm Based on Ant Colony Optimization and Adaptive Large Neighborhood Search for Routing and Charging Scheduling of Electric Vehicles

蚁群优化算法 计算机科学 调度(生产过程) 软件部署 数学优化 电动汽车 蚁群 启发式 缩小 算法 数学 操作系统 功率(物理) 物理 量子力学
作者
Ziwei Li,Yanling Wei,Ju H. Park
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:11 (1): 934-944 被引量:3
标识
DOI:10.1109/tte.2024.3398113
摘要

The past few decades have witnessed the boom of electric vehicles (EVs) techniques in response to their energy efficiency and reduction of the carbon footprint. However, limited cruising range and sparse charging infrastructure could restrain a massive deployment of EVs. To mitigate the problem, the need for routing and charging scheduling algorithms subject to minimization of time and economic costs emerged. The objective of this paper is to propose an improved ant colony optimization (ACO) and adaptive large neighborhood search (ALNS)-based bilevel algorithm for the solvability of routing and charging scheduling problem of EVs. Specifically, in the first stage, the feasibility of EVs' journeys is enhanced through two procedures: ameliorating the computation method for individual ants' node selection probabilities and upgrading ACO's pheromone update strategy after each iteration. In the second stage, the initial solutions from the final solutions of latter procedure are updated using different destroy and repair operators to optimize heuristic solutions. Finally, the effectiveness and superiority of the proposed algorithm are evaluated by comparisons with two other heuristic algorithms, and it is shown that the proposed algorithm provides better solution performance in terms of less time and economic costs based on the road network model of the Suzhou-Wuxi Highway Network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
swan发布了新的文献求助10
2秒前
楼迎荷完成签到,获得积分10
2秒前
杨家辉完成签到,获得积分20
2秒前
斯文败类应助雪山飞虹采纳,获得10
5秒前
顾矜应助激情的士萧采纳,获得10
5秒前
FashionBoy应助糯米糍采纳,获得10
6秒前
慕青应助务实的南露采纳,获得10
7秒前
SYLH应助ComeOn采纳,获得10
8秒前
NexusExplorer应助Tzzl0226采纳,获得10
9秒前
称心曼安应助木头马尾采纳,获得10
10秒前
10秒前
10秒前
无痕完成签到,获得积分10
14秒前
14秒前
orixero应助Yh_alive采纳,获得10
15秒前
15秒前
17秒前
17秒前
shanp发布了新的文献求助10
18秒前
18秒前
格物致理完成签到,获得积分10
18秒前
称心曼安应助糯米糍采纳,获得10
20秒前
慕青应助火火火采纳,获得10
21秒前
BBzc发布了新的文献求助10
22秒前
酷酷隶完成签到,获得积分20
23秒前
小蘑菇应助YYMM采纳,获得10
24秒前
雪山飞虹发布了新的文献求助10
24秒前
junmahmu完成签到,获得积分10
24秒前
共享精神应助luyao采纳,获得10
25秒前
11111发布了新的文献求助10
26秒前
27秒前
28秒前
hu完成签到,获得积分10
28秒前
28秒前
30秒前
善良的宛凝完成签到,获得积分10
30秒前
31秒前
31秒前
SMG发布了新的文献求助30
32秒前
JAKEyy完成签到,获得积分10
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814939
求助须知:如何正确求助?哪些是违规求助? 3358987
关于积分的说明 10399369
捐赠科研通 3076561
什么是DOI,文献DOI怎么找? 1689868
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608