Predicting CD27 expression and clinical prognosis in serous ovarian cancer using CT-based radiomics

医学 无线电技术 卵巢癌 浆液性卵巢癌 浆液性液体 生殖医学 内科学 肿瘤科 放射科 妇科 病理 癌症 怀孕 遗传学 生物
作者
Chen Zhang,Heng Cui,Yi Li,Xiaohong Chang
出处
期刊:Journal of Ovarian Research [Springer Nature]
卷期号:17 (1)
标识
DOI:10.1186/s13048-024-01456-7
摘要

Abstract Background This study aimed to develop and evaluate radiomics models to predict CD27 expression and clinical prognosis before surgery in patients with serous ovarian cancer (SOC). Methods We used transcriptome sequencing data and contrast-enhanced computed tomography images of patients with SOC from The Cancer Genome Atlas ( n = 339) and The Cancer Imaging Archive ( n = 57) and evaluated the clinical significance and prognostic value of CD27 expression. Radiomics features were selected to create a recursive feature elimination-logistic regression (RFE-LR) model and a least absolute shrinkage and selection operator logistic regression (LASSO-LR) model for CD27 expression prediction. Results CD27 expression was upregulated in tumor samples, and a high expression level was determined to be an independent protective factor for survival. A set of three and six radiomics features were extracted to develop RFE-LR and LASSO-LR radiomics models, respectively. Both models demonstrated good calibration and clinical benefits, as determined by the receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis. The LASSO-LR model performed better than the RFE-LR model, owing to the area under the curve (AUC) values of the ROC curves (0.829 vs. 0.736). Furthermore, the AUC value of the radiomics score that predicted the overall survival of patients with SOC diagnosed after 60 months was 0.788 using the LASSO-LR model. Conclusion The radiomics models we developed are promising noninvasive tools for predicting CD27 expression status and SOC prognosis. The LASSO-LR model is highly recommended for evaluating the preoperative risk stratification for SOCs in clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
上官若男应助浮熙采纳,获得10
1秒前
1秒前
海石酸辣发布了新的文献求助30
1秒前
2秒前
2秒前
Jasper应助愉快的烤鸡采纳,获得10
3秒前
无花果应助ylf采纳,获得10
3秒前
3秒前
海贼学术发布了新的文献求助10
4秒前
keigo发布了新的文献求助10
4秒前
潇洒的寻梅完成签到 ,获得积分10
4秒前
pkqaifd应助东流水采纳,获得10
4秒前
5秒前
12发布了新的文献求助10
5秒前
细腻沅发布了新的文献求助10
7秒前
7秒前
RBT发布了新的文献求助10
7秒前
奋斗惮发布了新的文献求助30
7秒前
zjuzj发布了新的文献求助10
7秒前
weijun完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
holy发布了新的文献求助10
10秒前
芋泥桃桃完成签到,获得积分10
10秒前
wenli完成签到,获得积分10
10秒前
yang完成签到,获得积分10
10秒前
林中逐梦发布了新的文献求助10
12秒前
隐形曼青应助keigo采纳,获得10
12秒前
水果发布了新的文献求助10
13秒前
13秒前
14秒前
刘闹闹发布了新的文献求助10
14秒前
14秒前
14秒前
汉堡包应助秀丽菠萝采纳,获得10
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308864
求助须知:如何正确求助?哪些是违规求助? 4453810
关于积分的说明 13858222
捐赠科研通 4341572
什么是DOI,文献DOI怎么找? 2384004
邀请新用户注册赠送积分活动 1378588
关于科研通互助平台的介绍 1346583