Using a machine learning algorithm to predict outcome of primary cytoreductive surgery in advanced ovarian cancer

医学 回顾性队列研究 递归分区 腹水 队列 算法 外科 卵巢癌 阶段(地层学) 内科学 癌症 计算机科学 生物 古生物学
作者
Sabrina Piedimonte,Lauren Erdman,Delvin So,Marcus Q. Bernardini,Sarah E Ferguson,Stephane Laframboise,Genevieve Bouchard Fortier,Paulina Cybulska,Taymaa May,Liat Hogen
出处
期刊:Journal of Surgical Oncology [Wiley]
标识
DOI:10.1002/jso.27137
摘要

To develop a machine learning (ML) algorithm to predict outcome of primary cytoreductive surgery (PCS) in patients with advanced ovarian cancer (AOC) METHODS: This retrospective cohort study included patients with AOC undergoing PCS between January 2017 and February 2021. Using radiologic criteria, patient factors (age, CA-125, performance status, BRCA) and surgical complexity scores, we trained a random forest model to predict the dichotomous outcome of optimal cytoreduction (<1 cm) and no gross residual (RD = 0 mm) using JMP-Pro 15 (SAS). This model is available at https://ipm-ml.ccm.sickkids.ca.One hundred and fifty-one patients underwent PCS and randomly assigned to train (n = 92), validate (n = 30), or test (n = 29) the model. The median age was 58 (27-83). Patients with suboptimal cytoreduction were more likely to have an Eastern Cooperative Oncology Group 3-4 (11% vs. 0.75%, p = 0.004), lower albumin (38 vs. 41, p = 0.02), and higher CA125 (1126 vs. 388, p = 0.012) than patients with optimal cytoreduction (n = 133). There were no significant differences in age, histology, stage, or BRCA status between groups. The bootstrap random forest model had AUCs of 99.8% (training), 89.6%(validation), and 89.0% (test). The top five contributors were CA125, albumin, diaphragmatic disease, age, and ascites. For RD = 0 mm, the AUCs were 94.4%, 52%, and 84%, respectively.Our ML algorithm demonstrated high accuracy in predicting optimal cytoreduction in patients with AOC selected for PCS and may assist decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨金毛发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
3秒前
5秒前
aguyihee完成签到,获得积分10
5秒前
6秒前
6秒前
陈一发布了新的文献求助20
6秒前
bkagyin应助dddddd采纳,获得10
6秒前
zmj完成签到 ,获得积分10
6秒前
applooc发布了新的文献求助10
6秒前
6秒前
夏定海发布了新的文献求助10
9秒前
顺顺完成签到 ,获得积分10
9秒前
在水一方应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
123发布了新的文献求助10
10秒前
10秒前
小花发布了新的文献求助10
10秒前
wickedzz发布了新的文献求助10
11秒前
11秒前
lalala完成签到,获得积分10
11秒前
顾矜应助BruceQ采纳,获得10
12秒前
早睡早起完成签到,获得积分10
12秒前
善学以致用应助一只小盆采纳,获得10
13秒前
15秒前
lizhiqian2024发布了新的文献求助10
15秒前
子云完成签到,获得积分10
15秒前
Cc发布了新的文献求助10
16秒前
CodeCraft应助研友_Z1eDgZ采纳,获得10
17秒前
frozen完成签到,获得积分10
17秒前
小二郎应助Linyi采纳,获得10
17秒前
17秒前
唧唧完成签到,获得积分10
17秒前
今天吃烧麦了吗完成签到,获得积分10
18秒前
幸运的尔芙完成签到,获得积分10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786235
求助须知:如何正确求助?哪些是违规求助? 3331908
关于积分的说明 10252787
捐赠科研通 3047188
什么是DOI,文献DOI怎么找? 1672476
邀请新用户注册赠送积分活动 801290
科研通“疑难数据库(出版商)”最低求助积分说明 760141