Shape-Former: Bridging CNN and Transformer via ShapeConv for multimodal image matching

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 变压器 特征学习 离群值 匹配(统计) 计算机视觉 数学 量子力学 统计 物理 电压
作者
Jiaxuan Chen,Xiaoxian Chen,Shuang Chen,Yuyan Liu,Yujing Rao,Yang Yang,Haifeng Wang,Dan Wu
出处
期刊:Information Fusion [Elsevier BV]
卷期号:91: 445-457 被引量:45
标识
DOI:10.1016/j.inffus.2022.10.030
摘要

As with any data fusion task, the front-end of the pipeline for image fusion, aiming to collect multitudinous physical properties from multimodal images taken by different types of sensors, requires registering the overlapped content of two images via image matching. In other words, the accuracy of image matching will influence directly the subsequent fusion results. In this work, we propose a hybrid correspondence learning architecture, termed as Shape-Former, which is capable of solving matching problems such as multimodal, and multiview cases. Existing attempts have trouble capturing intricate feature interactions for seeking good correspondence, if the image pairs simultaneously suffer from geometric and radiation distortion. To address this, our key is to take advantage of convolutional neural network (CNN) and Transformer for enhancing structure consensus representation ability. Specifically, we introduce a novel ShapeConv so that CNN and Transformer can be generalized to sparse matches learning. Furthermore, we provide a robust soft estimation of outliers mechanism for filtering the response of outliers before capturing shape features. Finally, we also propose coupling multiple consensus representations to further solve the context conflict problems such as local ambiguity. Experiments with variety of datasets reveal that our Shape-Former outperforms state-of-the-art on multimodal image matching, and shows promising generalization ability to different types of image deformations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助伏城采纳,获得30
1秒前
2秒前
旷野完成签到,获得积分10
3秒前
ruoyu111完成签到,获得积分10
4秒前
ChrisKim完成签到,获得积分10
6秒前
7秒前
秋半梦完成签到,获得积分10
7秒前
9秒前
10秒前
11秒前
阳光的卿关注了科研通微信公众号
11秒前
LH完成签到,获得积分10
12秒前
AAA完成签到,获得积分10
12秒前
科研通AI5应助cjjd采纳,获得10
14秒前
wuxunxun2015发布了新的文献求助10
15秒前
伏城发布了新的文献求助30
15秒前
marco完成签到 ,获得积分10
15秒前
弹指一挥间完成签到 ,获得积分10
19秒前
李浩然完成签到,获得积分10
22秒前
苏桑焉完成签到 ,获得积分10
23秒前
25秒前
小马甲应助叶长亭采纳,获得10
26秒前
27秒前
繁荣的忆文完成签到,获得积分10
28秒前
cjjd完成签到,获得积分10
28秒前
28秒前
李浩然发布了新的文献求助10
30秒前
30秒前
ll发布了新的文献求助10
31秒前
cjjd发布了新的文献求助10
33秒前
33秒前
cmicha完成签到 ,获得积分10
36秒前
石火发布了新的文献求助10
36秒前
39秒前
Owen应助cmicha采纳,获得10
40秒前
Yami完成签到 ,获得积分10
42秒前
可爱的函函应助打我呀采纳,获得10
44秒前
44秒前
科研通AI5应助李浩然采纳,获得10
46秒前
崔宁宁完成签到 ,获得积分10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761753
求助须知:如何正确求助?哪些是违规求助? 3305518
关于积分的说明 10134626
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658226
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751