Optimal Strategy for Designing a Multitask Learning-Based Hybrid Model to Predict Wheat Leaf Nitrogen Content

样本量测定 先验与后验 计算机科学 采样(信号处理) 统计 数学 算法 计算机视觉 滤波器(信号处理) 认识论 哲学
作者
Pengfei Chen,Xiao Ma
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:1
标识
DOI:10.1109/lgrs.2023.3320154
摘要

By combining a multitask deep learning method and a nitrogen PROSPECT and scattering by arbitrarily inclined leaves (N-PROSAIL) model, we proposed a multitask learning-based hybrid model (ML-HM) for leaf nitrogen content (LNC) prediction in a previous study. To provide an optimal ML-HM design for LNC prediction, this study focused on analyzing how factors, such as the simulated data distribution and sample size and the simulated and measured data batch sizes, affect the ML-HM accuracy. For this purpose, different scenarios for the above three factors were generated. ML-HMs were designed under these scenarios, and the performance was evaluated. The results showed that the simulated data distribution affects the ML-HM inversion accuracy, and it is better to use a priori knowledge to set the range and sampling strategy for the N-PROSAIL input variables to obtain a generated simulated data distribution that is similar to that of the measured data. The ML-HM accuracy increases with increasing measured sample size, but it does not change in an obvious manner once a certain threshold is reached. Thus, it is better to apply the sample size determination method based on simple random sampling to calculate the required sample size. The simulated and measured data batch sizes significantly affect the ML-HM accuracy, and we recommended creating a model for ML-HM accuracy prediction based on a certain number of batch size scenarios and using it to estimate suitable batch sizes of simulated and measured data to design an ML-HM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
biov完成签到,获得积分10
刚刚
kiwi完成签到 ,获得积分10
1秒前
无情雨双完成签到,获得积分10
1秒前
从容映易完成签到,获得积分10
2秒前
乐观的眼睛完成签到,获得积分10
2秒前
leo完成签到,获得积分10
2秒前
xingxing发布了新的文献求助10
2秒前
Yuciyy完成签到,获得积分10
3秒前
xinyu发布了新的文献求助10
4秒前
稳重完成签到 ,获得积分10
4秒前
机械师简完成签到,获得积分20
5秒前
李健应助顺利的愫采纳,获得10
5秒前
rongrong12完成签到,获得积分10
5秒前
zyn完成签到 ,获得积分10
5秒前
雪隐完成签到,获得积分10
5秒前
HEIKU应助林狗采纳,获得10
5秒前
芝士完成签到,获得积分10
6秒前
6秒前
钱多多完成签到,获得积分10
7秒前
akz完成签到,获得积分20
7秒前
晨曦完成签到,获得积分10
7秒前
7秒前
血影完成签到,获得积分10
7秒前
伶俐如冰完成签到,获得积分10
8秒前
Huang完成签到,获得积分10
8秒前
LZ完成签到,获得积分10
9秒前
9秒前
9秒前
yyy完成签到,获得积分10
9秒前
serina完成签到 ,获得积分10
9秒前
9秒前
xbo完成签到,获得积分10
9秒前
彭于晏应助科研通管家采纳,获得10
10秒前
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得30
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
The Oxford Handbook of Video Game Music and Sound 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827518
求助须知:如何正确求助?哪些是违规求助? 3369790
关于积分的说明 10457969
捐赠科研通 3089470
什么是DOI,文献DOI怎么找? 1699905
邀请新用户注册赠送积分活动 817560
科研通“疑难数据库(出版商)”最低求助积分说明 770263