ADMNet: Adaptive-Weighting Dual Mapping for Online Tracking With Respiratory Motion Estimation in Contrast-Enhanced Ultrasound

计算机科学 计算机视觉 人工智能 加权 BitTorrent跟踪器 运动估计 对比度(视觉) 运动补偿 跟踪(教育) 医学影像学 匹配移动 水准点(测量) 运动(物理) 放射科 眼动 医学 心理学 教育学 大地测量学 地理
作者
Ming‐De Li,Shunro Matsumoto,Si‐Min Ruan,Mei‐Qing Cheng,Li‐Da Chen,Ze-Rong Huang,Wei Li,Peng Lin,Hong Yang,Ming Kuang,Ming‐De Lu,Qinghua Huang,Wei Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 58-68
标识
DOI:10.1109/tip.2023.3333195
摘要

Lesion localization and tracking are critical for accurate, automated medical imaging analysis. Contrast-enhanced ultrasound (CEUS) significantly enriches traditional B-mode ultrasound with contrast agents to provide high-resolution, real-time images of blood flow in tissues and organs. However, many trackers, designed primarily for natural RGB or B-mode ultrasound images, underutilize the extensive data from dual-screen enhanced images and fail to account for respiratory motion, thus facing challenges in achieving accurate target tracking. To address the existing challenges, we propose an adaptive-weighted dual mapping (ADMNet), an online tracking framework tailored for CEUS. Firstly, we introduced a novel Multimodal Atrous Attention Fusion (MAAF) module, innovatively designed to adapt the weightage between B-mode and enhanced images in dual-screen CEUS, reflecting the clinician’s dynamic focus shifts between screens. Secondly, we proposed a Respiratory Motion Compensation (RMC) module to correct motion trajectory interferences due to respiratory motion, effectively leveraging temporal information. We utilized two newly established CEUS datasets, totaling 35,082 frames, to benchmark the ADMNet against various advanced B-mode ultrasound trackers. Our extensive experiments revealed that ADMNet achieves new state-of-the-art performance in CEUS tracking. Ablation studies and visualizations further underline the effectiveness of MAAF and RMC modules, demonstrating the promising potential of ADMNet in clinical CEUS tracing, thus providing novel research avenues in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流星完成签到,获得积分10
5秒前
SciGPT应助lucky采纳,获得10
5秒前
6秒前
6秒前
kw完成签到 ,获得积分10
7秒前
白斯特完成签到,获得积分10
7秒前
完美世界应助尛森采纳,获得10
8秒前
9秒前
英姑应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
阿匡完成签到,获得积分10
12秒前
无花果应助生动的半山采纳,获得10
13秒前
yinshaoyu21发布了新的文献求助10
13秒前
16秒前
lucky发布了新的文献求助10
20秒前
20秒前
wf0806发布了新的文献求助20
20秒前
小高完成签到 ,获得积分10
21秒前
25秒前
26秒前
顾矜应助伶俐雅柏采纳,获得30
28秒前
风再起时完成签到,获得积分10
28秒前
jenningseastera应助阿匡采纳,获得10
29秒前
石头完成签到,获得积分10
31秒前
风再起时发布了新的文献求助10
31秒前
32秒前
yinshaoyu21完成签到,获得积分10
32秒前
abb完成签到,获得积分10
32秒前
浅色墨水完成签到,获得积分10
32秒前
cdercder应助123采纳,获得10
34秒前
充电宝应助123采纳,获得10
34秒前
冰魂应助lalala123采纳,获得10
34秒前
糊涂的宛发布了新的文献求助10
36秒前
39秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800289
求助须知:如何正确求助?哪些是违规求助? 3345565
关于积分的说明 10325834
捐赠科研通 3062031
什么是DOI,文献DOI怎么找? 1680717
邀请新用户注册赠送积分活动 807201
科研通“疑难数据库(出版商)”最低求助积分说明 763557