Wearable Artificial Intelligence for Detecting Anxiety: Systematic Review and Meta-Analysis

荟萃分析 焦虑 可穿戴计算机 系统回顾 可穿戴技术 子群分析 数据提取 人工智能 梅德林 心理学 计算机科学 医学 精神科 内科学 政治学 法学 嵌入式系统
作者
Alaa Abd‐Alrazaq,Rawan AlSaad,Manale Harfouche,Sarah Aziz,Arfan Ahmed,Rafat Damseh,Javaid I. Sheikh
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e48754-e48754 被引量:27
标识
DOI:10.2196/48754
摘要

Background Anxiety disorders rank among the most prevalent mental disorders worldwide. Anxiety symptoms are typically evaluated using self-assessment surveys or interview-based assessment methods conducted by clinicians, which can be subjective, time-consuming, and challenging to repeat. Therefore, there is an increasing demand for using technologies capable of providing objective and early detection of anxiety. Wearable artificial intelligence (AI), the combination of AI technology and wearable devices, has been widely used to detect and predict anxiety disorders automatically, objectively, and more efficiently. Objective This systematic review and meta-analysis aims to assess the performance of wearable AI in detecting and predicting anxiety. Methods Relevant studies were retrieved by searching 8 electronic databases and backward and forward reference list checking. In total, 2 reviewers independently carried out study selection, data extraction, and risk-of-bias assessment. The included studies were assessed for risk of bias using a modified version of the Quality Assessment of Diagnostic Accuracy Studies–Revised. Evidence was synthesized using a narrative (ie, text and tables) and statistical (ie, meta-analysis) approach as appropriate. Results Of the 918 records identified, 21 (2.3%) were included in this review. A meta-analysis of results from 81% (17/21) of the studies revealed a pooled mean accuracy of 0.82 (95% CI 0.71-0.89). Meta-analyses of results from 48% (10/21) of the studies showed a pooled mean sensitivity of 0.79 (95% CI 0.57-0.91) and a pooled mean specificity of 0.92 (95% CI 0.68-0.98). Subgroup analyses demonstrated that the performance of wearable AI was not moderated by algorithms, aims of AI, wearable devices used, status of wearable devices, data types, data sources, reference standards, and validation methods. Conclusions Although wearable AI has the potential to detect anxiety, it is not yet advanced enough for clinical use. Until further evidence shows an ideal performance of wearable AI, it should be used along with other clinical assessments. Wearable device companies need to develop devices that can promptly detect anxiety and identify specific time points during the day when anxiety levels are high. Further research is needed to differentiate types of anxiety, compare the performance of different wearable devices, and investigate the impact of the combination of wearable device data and neuroimaging data on the performance of wearable AI. Trial Registration PROSPERO CRD42023387560; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=387560
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mao发布了新的文献求助10
1秒前
ouyang完成签到,获得积分20
1秒前
1秒前
搜集达人应助yilunhuangyue采纳,获得10
1秒前
Jasmine发布了新的文献求助10
2秒前
王丹靖完成签到 ,获得积分10
2秒前
2秒前
嘿嘿完成签到,获得积分10
3秒前
星辰大海应助313采纳,获得10
4秒前
dada完成签到,获得积分10
5秒前
AA发布了新的文献求助10
6秒前
keyanbaicai完成签到,获得积分10
7秒前
8秒前
faye发布了新的文献求助30
9秒前
nini完成签到,获得积分10
9秒前
9秒前
10秒前
xinyuwang完成签到,获得积分10
10秒前
11秒前
12秒前
上官若男应助ven采纳,获得10
12秒前
隼人大帝发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
DDDD发布了新的文献求助10
16秒前
冷静未来发布了新的文献求助10
16秒前
yilunhuangyue发布了新的文献求助10
16秒前
不倦发布了新的文献求助10
16秒前
18秒前
彭于晏应助无语的小熊猫采纳,获得10
18秒前
酷波er应助AA采纳,获得10
21秒前
甘甘完成签到,获得积分10
21秒前
花花123发布了新的文献求助10
22秒前
xaiomeng完成签到,获得积分10
22秒前
华仔应助爱喝面汤的tt采纳,获得10
23秒前
充电宝应助ZZ采纳,获得10
23秒前
zhuang完成签到 ,获得积分10
24秒前
华仔应助杆儿采纳,获得10
26秒前
122319应助奋斗纹采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288966
求助须知:如何正确求助?哪些是违规求助? 4440796
关于积分的说明 13825631
捐赠科研通 4323077
什么是DOI,文献DOI怎么找? 2372945
邀请新用户注册赠送积分活动 1368399
关于科研通互助平台的介绍 1332283